INFORME TÉCNICO

DEPARTAMENTO DE OCEANOGRAFÍA BIOLÓGICA

BIOMASA Y ESTRUCTURA DEL ZOOPLANCTON FRENTE A LA COSTA OCCIDENTAL DE BAJA CALIFORNIA DURANTE 2001 (CRUCEROS IMECOCAL 0101, 0104, 0107, 0110)

ZOOPLANKTON BIOMASS AND STRUCTURE OFF THE WESTERN COAST OF BAJA CALIFORNIA DURING 2001 (IMECOCAL CRUISES 0101, 0104, 0107, 0110)

> Bertha E. Lavaniegos, José L. Cadena Ramírez, Clara M. Hereu Romero y Luis C. Jiménez Pérez

CENTRO DE INVESTIGACIÓN CIENTÍFICA Y DE EDUCACIÓN SUPERIOR DE ENSENADA

Lavaniegos, Bertha E., José L. Cadena Ramírez, Clara M. Hereu Romero y Luis C. Jiménez Pérez. 2005. Biomasa y estructura del zooplancton frente a la costa occidental de Baja California durante 2001 (Cruceros IMECOCAL 0101, 0104, 0107, 0110). Informe Técnico. Departamento de Oceanografía Biológica, CICESE 53 p. (32179).

BIOMASA Y ESTRUCTURA DEL ZOOPLANCTON FRENTE A LA COSTA OCCIDENTAL DE BAJA CALIFORNIA DURANTE 2001 (CRUCEROS IMECOCAL 0101, 0104, 0107, 0110)

ZOOPLANKTON BIOMASS AND STRUCTURE OFF THE WESTERN COAST OF BAJA CALIFORNIA DURING 2001 (IMECOCAL CRUISES 0101, 0104, 0107, 0110)

Bertha E. Lavaniegos José L. Cadena Ramírez Clara M. Hereu Romero Luis C. Jiménez Pérez

Departamento de Oceanografía Biológica Centro de Investigación Científica y de Educación Superior de Ensenada Km 107 Carretera Tijuana-Ensenada. Apdo. Postal 2732 22800 Ensenada, Baja California, México berlav@cicese.mx

Informe Técnico Technical Report Agosto 2005 August 2005

CONTENIDO CONTENTS

RESUMEN ABSTRACT	4
1. INTRODUCCIÓN INTRODUCTION	5
1.1 Objetivos Objectives	6
2. MÉTODOS METHODS	6
2.1 Colecta y preservación de muestras Samples collection and preservation	6
2.2 Análisis de laboratorio Laboratory Analysis	7
2.3 Tratamiento de los datos Data processing	8
3. RESULTADOS RESULTS	9
3.1 Biomasa del zooplancton Zooplankton biomass	9
3.2 Abundancia por grupos taxonómicos Abundance of taxonomic groups	9
3.3 Patrones de distribución Distributional patterns	0
4. COMPARACIÓN CON OTROS DATOS COMPARISON WITH OTHER DATA	3
 4.1 Composición del zooplancton de septiembre 1997 a octubre 2001 (cruceros IMECOCAL) Zooplankton structure from September 1997 to October 2001 (IMECOCAL cruises)	3
4.2 Biomasa de zooplancton en el contexto del periodo 1951-1984 (cruceros CalCOFI) Zooplankton biomass in the context of the period 1951-1985 (CalCOFI cruises) 1	4
5. AGRADECIMIENTOS AKNOWLEDGEMENTS	5
6. LITERATURA CITADA LITERATURE CITED	6
Tabla 1. Datos de los arrastres y biomasa del zooplancton del crucero IMECOCAL 0101Table 1. Tow data and zooplankton biomass from IMECOCAL cruise 01011	7
Tabla 2. Datos de los arrastres y biomasa del zooplancton del crucero IMECOCAL 0104	

Table 2. Tow data and zooplankton biomass from IMECOCAL cruise 0104 1
Tabla 3. Datos de los arrastres y biomasa del zooplancton del crucero IMECOCAL 0107Table 3. Tow data and zooplankton biomass from IMECOCAL cruise 01072
Tabla 4. Datos de los arrastres y biomasa del zooplancton del crucero IMECOCAL 0110Table 4. Tow data and zooplankton biomass from IMECOCAL cruise 01102
Tabla 5. Organismos grandes excluidos de la medición de biomasa chicaTable 5. Large organisms excluded in the measurement of small biomass
Tabla 6. Abundancia de grupos de zooplancton en estaciones nocturnas del crucero IMECOCAL 0101
Table 6. Abundance of zooplankton groups in nighttime stations of the IMECOCAL cruise 0101 2
Tabla 7. Abundancia de grupos de zooplancton en estaciones nocturnas del crucero IMECOCAL 0104
Table 7. Abundance of zooplankton groups in nighttime stations of the IMECOCAL cruise 0104 2
Tabla 8. Abundancia de grupos de zooplancton en estaciones nocturnas del crucero IMECOCAL 0107
Table 8. Abundance of zooplankton groups in nighttime stations of the IMECOCAL cruise 0107 2
Tabla 9. Abundancia de grupos de zooplancton en estaciones nocturnas del crucero IMECOCAL 0110
Table 9. Abundance of zooplankton groups in nighttime stations of the IMECOCAL cruise 0110 3
Figure 1. Corrientes del Pacífico Norte y Ecuatorial (tomadas de Svedrup <i>et al.</i> 1942).Figure 1. Currents of the North and Equatorial Pacific (after Svedrup <i>et al.</i> 1942)
Figure 2. Estaciones de colecta durante los cruceros IMECOCAL 0101, 0104, 0107 y 0110. Figure 2. Sampling stations during the IMECOCAL cruises 0101, 0104, 0107 and 0110
Figura 3. Volumen desplazado de zooplancton (ml/1000 m ³) durante 2001. Figure 3. Displacement volume of zooplankton (ml/1000 m ³) during 2001
Figura 4. Distribución de copépodos durante 2001 en estaciones nocturnas. Figure 4. Distribution of copepods during 2001 in nighttime stations
Figura 5. Distribución de eufáusidos durante 2001 en estaciones nocturnas. Figure 5. Distribution of euphausiids during 2001 in nighttime stations
Figura 6. Distribución de ostrácodos durante 2001 en estaciones nocturnas. Figure 6. Distribution of ostracods during 2001 in nighttime stations
Figura 7. Distribución de anfípodos durante 2001 en estaciones nocturnas. Figure 7. Distribution of amphipods during 2001 in nighttime stations
Figura 8. Distribución de apendicularias durante 2001 en estaciones nocturnas. Figure 8. Distribution of appendicularians during 2001 in nighttime stations
Figura 9. Distribución de doliólidos durante 2001 en estaciones nocturnas. Figure 9. Distribution of doliolids during 2001 in nighttime stations
Figure 10.Distribución de salpas durante 2001 en estaciones nocturnas. Figure 10. Distribution of salps during 2001 in nighttime stations

Figura Figure	11.Distribución de pterópodos durante 2001 en estaciones nocturnas.11. Distribution of pteropods during 2001 in nighttime stations
Figura Figure	12.Distribución de quetognatos durante 2001 en estaciones nocturnas.12. Distribution of chaetognaths during 2001 in nighttime stations
Figura Figure	13.Distribución de sifonóforos durante 2001 en estaciones nocturnas.13. Distribution of siphonophores during 2001 in nighttime stations
Figura Figure	14.Distribución de medusas durante 2001 en estaciones nocturnas.14. Distribution of medusae during 2001 in nighttime stations
Figura Figure	15.Distribución de huevos y larvas de peces durante 2001 en estaciones nocturnas.15. Distribution of fish eggs and larvae during 2001 in nighttime stations
Figura Figure	16. Aportación de los principales taxa por región en los cruceros IMECOCAL.16. Proportion of the main taxa by region in the IMECOCAL cruises
Figura	17. Variación histórica de la biomasa zooplanctónica en la región norte (líneas 100- 110).
Figure	7. Zooplankton biomass variability in the northern region (lines 100-110)
Figura	18. Variación histórica de la biomasa zooplanctónica en la región central (líneas 113-137).
Figure	8. Zooplankton biomass variability in the central region (lines 113-137)

RESUMEN.- Se presentan resultados de volumen desplazado de macrozooplancton, así como de abundancia y distribución de los principales grupos taxonómicos de los cruceros IMECOCAL 0101, 0104, 0107 y 0110, los cuales fueron realizados en enero, abril, julio y octubre de 2001. La biomasa mediana de zooplancton en enero (60 ml/1000 m³) fue 20% más baja que en julio y octubre (76 y 79 ml/1000 m³ respectivamente). Sin embargo, representó un menor contraste entre invierno y verano respecto al observado en el 2000 (cuando fue de 42%). La abundancia nocturna durante abril y julio alcanzó una mediana de 49 ind m⁻³ en la región norte de (30-32°N), siendo la mayor abundancia observada en el área desde 1998. En la región central (24-30°N), la máxima abundancia de zooplancton ocurrió en enero (68 ind m⁻³). Dominaron los copépodos, con un máximo en el crucero 0101 de 65% en la región norte y de 46% en la región central. La distribución de copépodos tuvo un marcado gradiente costaocéano en el verano. El segundo grupo en importancia fueron los eufáusidos, con promedios de 10-18% en la región norte y 15-17% en la central. La abundancia media de quetognatos también fue mayor en la región central (10-14%) que en la norte (4-9%). Las apendicularias fueron abundantes a lo largo del año pero otros tunicados pelágicos fueron escasos, excepto por los doliólidos durante julio, que tuvieron alta incidencia en la zona oceánica.

ABSTRACT.- Data of macrozooplankton displacement volume, as well as abundance and distribution of the main taxa are presented for the IMECOCAL cruises 0101, 0104, 0107 y 0110, which were done in January, April, July and October 2001. Median zooplankton biomass in January (60 ml/1000 m³) was 20% lower than in July and October (76 and 79 ml/1000 m³ respectively). However, this represented less contrast between winter and summer in relation to the year 2000 (when was of 42%). The nighttime abundance during April and July reached a median of 49 ind m⁻³ in the northern region (30-32°N), being the highest abundance observed in the area from 1998. In the central region (24-30°N), the maximum abundance of zooplankton occurred in January (68 ind m⁻³). Copepods were dominant, with a maximum in the cruise 0101 of 65% in the northern region and 46% in the central region. Copepods distribution had a strong onshore-offshore gradient in the summer. The second most important taxa were the euphausiids, with averages of 10-18% in the northern region and 15-17% in the central. Mean abundance of chatognaths was also higher in the central region (10-14%) than at north (4-9%). The apendicularians were abundant year round, but other pelagic tunicates were scarce, excepting the doliolids during July, when had a high oceanic incidence.

1. INTRODUCCION

Los datos que presentamos en este reporte son producto del análisis de las muestras de zooplancton colectadas en cuatro cruceros del año 2001 por el programa Investigaciones Mexicanas de la Corriente de California (IMECOCAL). Las campañas oceanográficas de 2001 corresponden al cuarto año de monitoreo oceánico trimestral desde que inició dicho programa. La Corriente de California transcurre a lo largo de 3000 km de costa de América del Norte, de los cuales el tercio sur es de dominio mexicano. El área cubierta por el IMECOCAL es aproximadamente un 75% de la porción de la Corriente de California que corresponde a México (Fig. 1). Hemos utilizado las mismas estaciones de colecta fijadas por el programa estadounidense California Cooperative Oceanic Fisheries Investigations (CalCOFI). Dicho programa inició sus actividades en 1949 enfocado a las causas de las fluctuaciones en las pesquerías de clupeidos del Estado de California, EUA. La Corriente de California era cubierta en su totalidad por CalCOFI hasta mediados de los 1970s. Posteriormente la cobertura se redujo y el ingreso en aguas mexicanas se hizo más esporádico, hasta desaparecer definitivamente después de 1984. El objetivo de IMECOCAL, al restablecer el monitoreo en la zona, es obtener y difundir información regional del ecosistema pelágico v su variabilidad en diferentes escalas espaciotemporales, que permita un mejor aprovechamiento de los recursos pesqueros.

La contribución del presente reporte es el aporte de datos de volumen desplazado de zooplancton a la comunidad científica, así como de abundancia de grupos funcionales durante el ciclo estacional 2001. enero 2001 fue el tercer invierno consecutivo con temperatura superficial fría (Durazo *et al.*, 2001). Esta condición se mantuvo en abril, al menos en la región norte (única cubierta por el IMECOCAL 0104), para dar paso a un verano y otoño 2001 similares al promedio (Schwing *et al.*, 2002). Temperaturas ligeramente altas (anomalías de 0.5-1.0°C) se presentaron en la zona oceánica durante 0107.

1. INTRODUCTION

The data presented in this report are the result of the zooplankton samples analysis, collected by the program Investigaciones Mexicanas de la Corriente de California (IMECOCAL) in four cruises during 2001. The 2001 cruises correspond to the fourth year of quarterly oceanographic surveys since the beginning of this program. The California Current progresses off the North America coast along of 3000 km. The southern third of these are Mexican. The area of the California Current covered by IMECOCAL is around 75% of the Mexican portion (Fig. 1). We use the same sampling locations occupied by American oceanographers involved in the California Cooperative Oceanic Fisheries Investigations (CalCOFI) program. That program started operations in 1949 with focus in the causes of clupeid fisheries variability off California, USA. The initial CALCOFI grid covered the whole California Current until the middle of the 1970s. Further the coverage was reduced, sampling Mexican waters sporadically, and completely stopping after 1984. IMECOCAL reestablished the monitoring in the Mexican region with the purpose to obtain and publish regional information of the pelagic ecosystem and its variability in different time-space scales, which will allow a better use of the fisheries resources in the future.

The contribution of the present report is to make available data of zooplankton displacement volume to the scientific community, as well as information about the abundance of functional groups during the seasonal cycle 2001. January 2001 was the third consecutive winter with cool surface temperature (Durazo *et al.*, 2001). These conditions continued in April, at least in the northern region (the only one surveyed by the IMECOCAL 0104), followed by a summer and fall similar to the average. Temperatures lightly warm (anomalies of 0.5-1.0°C) occurred in the oceanic zone during 0107.

Zooplankton biomass data of the

Los datos de biomasa de zooplancton de los cruceros anteriores de IMECOCAL (septiembre 1997 a octubre 2000) están disponibles en informes técnicos y pueden consultarse vía internet (http://imecocal.cicese.mx/texto/prod/tecnic.htm). La biomasa del zooplancton durante 2000 presentó una recuperación, después de los valores bajos experimentados durante La Niña 1998-1999 (Lavaniegos *et al.*, 2002). En este reporte describiremos como evolucionó la biomasa durante 2001 y como se compara con el periodo 1951-1984.

1.1 Objetivos

- Presentar un registro de las coordenadas geográficas y datos técnicos de los arrastres de red bongo de los cruceros IMECOCAL 0101, 0104, 0107, 0110.
- Describir la distribución de volumen desplazado de zooplancton durante dichos cruceros.
- Describir la estructura del zooplancton y la distribución de los grupos principales durante dichos cruceros.

2. MÉTODOS

2.1 Colecta y preservación de muestras

Las muestras de zooplancton fueron colectadas a bordo del B/O *Francisco de Ulloa* durante cuatro periodos del 2001:

- 16 de enero a 3 de febrero (0101)
- 4 a 11 de abril (0104)
- 26 de junio a 16 de julio (0107)
- 3 a 23 de octubre (0110)

Se realizaron arrastres oblicuos con red bongo de 61 cm de diámetro de boca (excepto en el crucero 0110 cuando fue de 71 cm), siguiendo a Smith y Richardson (1977). Idealmente la profundidad de arrastre fue de 210 m, ya que se largaron 300 m de cable con una inclinación de 45°. El ángulo del cable se registró cada 10 m durante el ascenso de la red, y su promedio sirvió para determinar la profundidad real de arrastre. En estaciones someras el lance se realizó a partir de 10 previous IMECOCAL cruises (September 1997 to October 2000) are also available in technical reports, and can be accessed at http://imecocal.cicese.mx/texto/prod/tecnic. htm. Zooplankton biomass during 2000 presented a increase, after the low values observed during La Niña 1998-1999 (Lavaniegos *et al.*, 2002). In this report we describe how the biomass evolved during 2001 and how it compares with the period 1951-1984.

1.1 Objectives

- To present a record of the geographic coordinates and technical data of the bongo net tows of the IMECOCAL cruises 0101, 0104, 0107, 0110.
- To describe the distribution of zooplankton displacement volume during those cruises.
- To describe the zooplankton structure and distribution of the main functional groups during those cruises.

2. METHODS

2.1 Samples collection and preservation

The zooplankton samples were collected on board of the R/V *Francisco de Ulloa* during four periods of 2001:

- January 16 to February 3 (0101)
- April 4-11 (0104)
- June 26 to July 16 (0107)
- October 3-23 (0110)

Oblique tows were done with a bongo net of 61 cm of diameter (excepting in the cruise 0110 when was of 71 cm), following to Smith & Richardson (1977). In theory, the tow depth was 210 m, because 300 m of wire were let out, with a wire angle inclination of 45°. The wire angle was recorded each 10 m during the ascent of the net, and the average was used to determine the real depth. In shallow stations the tow was done from a depth of 10 m above the sea bottom. Both nets were of 500 μ m of mesh width. A General Oceanics flowmeter was place in front of each net to estimate m arriba del fondo marino. La luz de malla de ambas redes fue de 500 μ m. Se colocó un flujómetro digital General Oceanics frente a la boca de cada red para estimar el volumen de agua filtrada. La velocidad de arrastre fue mantenida aproximadamente constante a 2 nudos. En total se colectaron 268 muestras (Fig. 2). El plancton fue preservado con formol al 4% neutralizado con borato de sodio. En las Tablas 1-4 se muestran los datos técnicos de los arrastres de zooplancton, así como los datos de volumen desplazado.

2.2 Análisis de laboratorio

El análisis de las muestras consistió en la medición de la biomasa del zooplancton, así como en el conteo de los organismos a nivel de grupos taxonómicos mayores. La medición de biomasa fue realizada por el método de volumen desplazado siguiendo a Kramer et al. (1972). Primeramente se separaron los organismos con volumen mayor a 5 ml. El material biológico restante se vertió en una probeta graduada de 100, 250 o 500 ml de capacidad (según la cantidad de plancton en cada muestra), y se ajustó el volumen hasta la marca superior. Posteriormente, el contenido fue transferido a otra probeta de las mismas dimensiones, con un tamiz de 333 µm ajustado a un embudo en la parte superior, para drenar el plancton. Se registró el volumen cuando el escurrimiento se redujo a una gota ocasional. La diferencia de estas mediciones se reporta como biomasa chica. El volumen de los organismos de mayor tamaño que habían sido separados, más la biomasa chica, se registró como biomasa total.

La cuantificación de abundancia se realizó únicamente en las muestras colectadas en horario nocturno (119 muestras). El conteo se hizo en una fracción de 1/16 o 1/32 de la muestra original, obtenida con un separador Folsom. Fracciones más pequeñas (1/64 o 1/128) se usaron en 10% de las muestras, debido a la gran cantidad de plancton; mientras que en muestras bajas en plancton (12%) se analizaron fracciones de 1/8 o 1/4. Los organismos contenidos en la submuestra fueron identificados a grandes grupos taxonómicos y contados con un microscopio estereoscópico. En volume of filtered water. The tow velocity was maintained approximately constant to 2 knots. The total collected samples were 268 (Fig. 2). The plankton was preserved with 4% formalin buffered with sodium borate. Technical data of the zooplankton tows are shown in Tables 1-4, as well as data of displacement volume.

2.2 Laboratory analysis

The analysis of samples consisted in the measurement of the zooplankton biomass, and the counting of the organisms at level of major taxa. The measurement of biomass was done by the method of displacement volume following to Kramer et al. (1972). First, the organisms with volume higher than 5 ml were removed. The rest of biological material was poured in a graduated cylinder of 100, 250 or 500 ml (depending of the amount of plankton in each sample), and the volume was adjusted to superior tick. Further, the content was transferred to other graduated cylinder of the same dimensions, with a 333 μ m draining cone in a funnel at the top to retain the plankton. The volume was recorded when the leakage was reduced to an occasional drop. The difference between these measures was reported as small biomass. The volume of the large organisms removed plus the small biomass were recorded as total biomass.

The quantification of abundance was done only in nighttime samples (119 samples). Counting was done on a 1/16 or 1/32 fraction of the sample, obtained with a Folsom splitter. Smaller fractions (1/64 or 1/128) were used in 10% of the samples, due to the high amount of plankton; while in samples with few plankton (12%) the analyzed fraction was 1/8 or 1/4. The organisms contained in the subsample were identified to major taxa and counted with a microscope. stereoscopic The mean counted per subsample were 1303 organisms.

2.3 Data processing

promedio se contaron 1303 organismos por submuestra.

2.3 Tratamiento de los datos

El volumen y la abundancia de plancton fueron estandarizados por volumen de agua filtrada (1000 m³ y m³ respectivamente). Se elaboraron mapas de distribución de biomasa de zooplancton y de distribución de abundancia de los principales grupos taxonómicos. Los mapas de biomasa se realizaron con el programa SIGMAPLOT 7, usando la función de distancia inversa para interpolación de contornos. Posteriormente se retocaron, para asegurar que los valores reales cayeran en los intervalos correspondientes. La distribución de abundancia de los grupos taxonómicos se presenta en forma puntual debido a la irregularidad de la malla al seleccionar solo las muestras nocturnas.

Debido a la falta de normalidad de los datos, se prefiere usar la mediana de abundancia, con el fin de mostrar los cambios en estructura del zooplancton a través de la serie de tiempo IMECOCAL. Para ello se agruparon las estaciones en dos regiones:

- 1) Norte líneas 100 a 110
- 2) Central líneas 113 a 137

La delimitación de estas regiones está basada en el criterio de que Punta Baja (30°N) es el límite entre dos grandes regiones de la Corriente de California (U.S. GLOBEC, 1994). La región norte forma parte del gran remolino ciclónico del Sur de California (abarca de Point Conception a Punta Baja). Dicha región presenta una marcada estratificación, mínimo forzamiento por viento y surgencias débiles. En la extensa región central el viento y las surgencias son moderados pero persistentes todo el año, y hay actividad a mesoescala.

Datos de volumen desplazado de los cruceros CalCOFI del periodo 1951-1984 se utilizaron para ilustrar los cambios de largo plazo de la biomasa del zooplancton. Se seleccionaron datos de las líneas 100 a 137, de cruceros realizados en enero (o febrero), abril (o mayo), julio (o agosto) y

Plankton volume and abundance were standardized per volume of water filtered (1000 m³ and m³ respectively). Charts of zooplankton biomass distribution were done, as well as abundance distribution for the main taxa. The biomass charts were done with the software SIGMAPLOT 7. using the function of inverse distance for contour interpolation. Further, were retouched, to make sure that real values fell in the corresponding intervals. Abundances distributions of taxa are presented punctually due to the irregularity of the grid when only nighttime samples are selected.

Due to the biased distribution of data, medians of abundance were calculated for the main taxa to show changes in zooplankton structure through the IMECOCAL time-series. Stations were grouped in two regions:

- 1) North lines 100 to 110
- 2) Central lines 113 to 137

Delimitation of these regions takes to Punta Baja (30°N) as the limit between two large regions of the California Current (U.S. GLOBEC, 1994). The north region is part of the Southern California Eddy (from Point Conception to Punta Baja). That region presents a marked stratification, minimum wind forcing and weak upwellings. In the extended central region, the wind and upwellings are moderate but persistent year round, and there is mesoscale activity (U.S. GLOBEC, 1994).

Data of displacement volume from CalCOFI cruises of the period 1951-1984 were used to illustrate long-term changes of zooplankton biomass. Data of lines 100 to 137 were selected, from cruises performed on January (or February), April (or May), July (or August), and October (or September). Medians per cruise were calculated, as well as the logarithmic mean to estimate low frequency anomalies, is to removing the seasonal sav trend (subtracting the long-term means of winter, spring, summer or fall in each case).

octubre (o septiembre). Se calcularon medianas por crucero, así como la media logarítmica para estimar anomalías de baja frecuencia, es decir, eliminando la tendencia estacional (restando las medias de largo plazo de invierno, primavera, verano u otoño, según sea el caso).

3. RESULTADOS

3.1 Biomasa del zooplancton

Las dos mediciones de biomasa (total y chica) que se reportan (Tablas 1-4) difieren en unas cuantas muestras, las cuales contenían uno o más organismos de mayor tamaño (Tabla 5). Considerando la medida más conservadora (biomasa chica), las medianas de los cuatro cruceros IMECOCAL fueron 60, 48, 76 y 79 ml/1000 m³ durante enero, abril, julio y octubre del 2001. El bajo valor de abril no puede considerarse representativo del área total, ya que solo se tomaron muestras hasta la línea 113.

Enero fue la temporada más pobre en biomasa, con 44% de las muestras con menos de 50 ml/1000 m³, contra 28% de las muestras en julio y 33% en octubre. En estos tres cruceros se observó alta abundancia en las estaciones cercanas a la costa de Punta San Hipólito (27°N) al Golfo de Ulloa (Fig. 3). Además, en julio la mayoría de las estaciones de Bahía Vizcaino registraron biomasas superiores a 350 ml/1000 m³. La región norte, con excepción de Punta Colonet (31°), estuvo más empobrecida en biomasa de zooplancton durante invierno y primavera.

Si se consideran solamente las colectas nocturnas, las medianas de enero, abril, julio y octubre fueron 82, 57, 102 y 98 ml/1000 m^3 respectivamente.

3.2 Abundancia por grupos taxonómicos

La mayoría de los organismos grandes, excluidos de la biomasa chica fueron juveniles de langostilla (*Pleuroncodes planipes*), especialmente en la región central durante octubre (Tabla 5).

3. RESULTS

3.1 Zooplankton biomass

The two measurements of biomass (total and small) reported (Tables 1-4) differed in few samples, which contained one or more large size organisms (Table 5). Considering the most conservative measurement (small biomass), the medians for the four IMECOCAL cruises were 60, 48, 76 and 79 ml/1000 m³ during January, April, July and October of 2001. The low value in April is not considered representative of the total area, because the samples were collected only up to transect line 113.

January was the season with lowest biomass, with 44% of the samples with less than 50 ml/1000 m³, against 28% of the samples in July, and 33% in October. In these three cruises high abundance was observed in stations near the coast between Punta San Hipolito (27°N) to the Gulf of Ulloa (Fig. 3). Besides, in July most of the stations inside Vizcaino Bay recorded biomass higher than 350 ml/1000 m³. The northern region, excepting Punta Colonet (31°), was more depleted in biomass during winter and spring.

If only nighttime samples were taken, the medians from January, April, July, and October were 82, 57, 102, and 98 ml/1000 m³ respectively.

3.2 Abundance of taxonomic groups

Most of the large organisms, excluded from the small biomass, were juvenile stages of red crab (*Pleuroncodes planipes*), particularly in the central region during October (Table 5).

Considering only the nighttime abundance, the medians of the organisms contained in the small biomass were 63, 49, 59 and 57 ind m⁻³ during January, July and

Considerando solo la abundancia de colectas nocturnas, las medianas de los organismos contenidos en la biomasa chica fue de 63, 59 y 57 ind m⁻³ durante enero, julio y octubre de 2001. Abril debe tomarse por separado ya que sólo se muestreó parte del área, donde la mediana fue de 49 ind m⁻³.

En enero, 61% de las muestras presentaron una abundancia total superior a los 50 ind m⁻³ (Tabla 6), con sólo una estación (130.30) superando los 500 ind m⁻³. Dicha muestra contenía gran cantidad de copépodos, eufáusidos y larvas de decápodos.

Las nueve muestras analizadas de abril contenían entre $30 \text{ y} 100 \text{ ind m}^{-3}$ (Tabla 7).

Durante julio 62% de las muestras tuvieron más de 50 ind m⁻³ (Tabla 8). Cinco estaciones costeras de la región central mostraron valores >500 ind m⁻³, coincidentes con los máximos de biomasa. Cuatro de estas estaciones contenían concentraciones de copépodos superiores a los 1000 ind m⁻³.

En octubre 65% de las muestras presentaron >50 ind m⁻³, pero ninguna sobrepasó los 150 ind m⁻³ (Tabla 9).

La estructura comunitaria promedio estuvo dominada por copépodos, los cuales mostraron una ligera disminución gradual de 53% (enero) a 41% (octubre). Los eufáusidos mantuvieron una abundancia relativa constante de a lo largo del año (13-16%). Lo mismo ocurrió con los quetognatos (9-11%). El resto de los taxa, pese a incorporar solo ¼ o ⅓ del zooplancton presentaron algunas características interesantes. Por ejemplo, las proporciones de sifonóforos y pterópodos fueron altas en octubre (9 y 8% respectivamente). En los cruceros restantes los sifonóforos estuvieron en el rango de 4-6% y los pterópodos en 2-3%. En julio los doliólidos arrojaron 4% contra una proporción \leq 1% el resto del año.

3.3 Patrones de distribución

La biomasa de zooplancton durante el año 2001 mostró un gradiente costa-océano bien definido en toda el área sólo en verano (Fig. 3). Los October of 2001. April haed 49 ind m⁻³, but must be taken separately due to only part of the area was sampled.

In January, 61% of the samples presented total abundance higher than 50 ind m⁻³ (Table 6). Only one station (130.30) exceeded 500 ind m⁻³. This sample contained a high amount of copepods, euphausiids and decapod larvae.

The nine samples analyzed from April had between 30 and 100 ind m^{-3} .

During July 62% of the samples had >50 ind m⁻³ (Table 8). Five coastal stations from the central region showed values >500 ind m⁻³, in coincidence which in general coincided with maximal biomass. Four of these stations had copepod abundance higher than 1000 ind m³.

In October 65% of the samples presented >50 ind m^{-3} , but any surpassed 150 ind m^{-3} (Table 9).

The mean community structure was dominated by copepods, which showed a light and gradual decrease from 53% (January) to 41% (October). The relative abundance of euphausiids was constant through the year (13-16%). The same occurred with the chaetognaths (9-11%). The rest of taxa combined comprised $\frac{1}{4}$ or $\frac{1}{3}$ of the zooplankton, and some were important in some cruises. By example, the proportion of siphonophores and pteropods were high in October (9 and 8% respectively). In the rest of cruises the siphonophores were in the rank of 4-6% and the pteropods in 2-3%. In July doliolids comprised 4% against а proportion of <1% the rest of the year.

3.3 Distributional patterns

The distribution of zooplankton biomass during the year 2001 showed a coast-offshore gradient only in summer (Fig. 3). The highest volumes from July were recorded off Punta Colonet, Vizcaino Bay and Gulf of Ulloa. High values were lacking in the other cruises, though the situation in April is not well known because the locations of Vizcaino and Gulf volúmenes máximos de julio se registraron frente a Punta Colonet, Bahía Vizcaino y Golfo de Ulloa. En los otros cruceros no se observaron altos valores, aunque no conocemos completamente la situación durante primavera, ya que no se muestreo esta las localidades de Vizcaino y Golfo de Ulloa.

La distribución de los diferentes taxa presentó patrones variables (Figs. 4-15). A continuación se comenta brevemente los rasgos más sobresalientes.

Copépodos. Mostraron un alto grado de agregación en julio (Fig. 4). En las estaciones someras de Vizcaino y Golfo de Ulloa su densidad sobrepaso los 400 ind m⁻³. En contraste el resto del área presentó en julio las más bajas capturas del año 2001. Aunque en enero también se observaron agregaciones costeras, los valores en la región oceánica no fueron tan bajos como los de julio. La región norte en enero fue más pobre en copépodos que la central. En abril y octubre la distribución fue relativamente homogénea con valores de bajos a regulares.

Eufáusidos. Hubo una clara demarcación de las zonas norte y central durante enero, con esta última presentando algunas estaciones costeras con más de 60 ind m^{-3} (Fig 5). Durante julio se observó un patrón similar, mientras que en octubre se aprecia un ligero gradiente costa-océano.

Ostrácodos. Las más bajas abundancias se observaron en enero así como una semejanza entre regiones (Fig. 6). El resto del año, la región más poblada fue la norte, con los máximos valores observados en abril. Tendieron a estar ausentes de las estaciones someras.

Anfípodos. Presentaron un incremento de enero a octubre (Fig. 7). También un cambio de tendencia de una predominancia en zona oceánica en enero a más costera en los demás cruceros.

Apendicularias. Fueron las más abundantes de los grupos de tunicados. Su distribución fue antagónica a la de los anfípodos. La región central estuvo más poblada que la norte en enero, con altos valores en las estaciones someras (Fig. 8). Esta tendencia costera se observó atenuada en julio y sin grandes diferencias entre las regiones norte y central. En

of Ulloa were not sampled.

The distribution of the different taxa presented variable patterns (Figs. 4-15). Main features are briefly commented bellow.

Copepods. Showed a high level of patchiness (Fig. 4). Copepod density surpassed 400 ind m⁻³ in the shallow stations of Vizcaino and Gulf of Ulloa. In contrast the rest of the area presented in July the lowest captures of the year 2001. Though coastal aggregations were also observed in January, values in the oceanic region were higher than those observed in July. Lesser copepods were present in the northern region than the central region in January. In April and October the distribution was relatively uniform with values from low to regular.

Euphausiids. There was a clear demarcation of the northern and central regions during January, with this last presenting >60 ind m⁻³ (Fig 5). A similar pattern was observed in July, while in October a light onshore-offshore gradient was observed.

Ostracods. The lowest abundance occurred in January with not differences between regions (Fig. 6). The rest of the year, the northern region was more populated with the highest values in April. They tended to be absent at shallow stations.

Amphipods. Showed an increase from January to October (Fig. 7). They also displayed a shift from higher abundance offshore in January to onshore in the rest of cruises.

Appendicularians. Were the most abundant of the tunicated taxa. Their distribution was antagonist to that of the amphipods. The central region was more populated in January, with high values at shallow stations (Fig. 8). This onshore trend was observed attenuated in July and with less difference between north and central regions. In October the oceanic stations had the highest abundance. octubre las estaciones más oceánicas tuvieron las mayores abundancias.

Doliólidos. Ausentes en muchas estaciones de la región norte en enero, abril y octubre (Fig. 9). Su mayor abundancia se registró en julio, hacia la zona oceánica.

Salpas. El patrón estacional fue muy variable (Fig. 10). Las agregaciones de salpas se encontraron en torno a Punta Eugenia en enero, hacia las estaciones más oceánicas en julio y en la región norte en octubre.

Pterópodos. Los principales agregados de estos organismos ocurrieron en el Golfo de Ulloa durante enero y octubre y en Vizcaíno en julio (Fig. 11). En octubre presentaron mayor abundancia generalizada en el área.

Quetognatos. Se observó una marcada diferencia regional a lo largo del año (Fig. 12). Las mayores abundancias se presentaron en enero.

Sifonóforos. No mostraron una tendencia espacial definida, pero si temporal (Fig. 13). Su mayor densidad poblacional fue en octubre.

Medusas. Algunas estaciones someras registraron altas concentraciones, mientras que en otras estuvieron ausentes (Fig. 14). En la región oceánica tienden a presentar bajos valores.

Ictioplancton. En abril se observaron un par de estaciones al norte con valores altos, pero el resto del año hubo una clara predominancia en la región central (Fig. 15). Los máximos se presentaron principalmente en Vizcaíno y Golfo de Ulloa.

Los grupos restantes fueron poco abundantes y no se presenta su distribución. Los decápodos se encontraron en 92% de las muestras, mientras que los heterópodos en 80%. Tres de los restantes taxa del holozoplancton (poliquetos, cladóceros y ctenóforos) se encontraron en 33-47% de las muestras, mientras que los pirosomas solo ocurrieron en 3%.

Los organismos más conspicuos del meroplancton fueron las larvas de estomatópodos, observadas en 19% de las muestras de la región norte y 51% de la región central. Abundancias

Doliolids. Absents in many stations of the northern region during January, April and October (Fig. 9). The highest abundance was in July toward the oceanic zone.

Salps. The seasonal pattern was variable (Fig. 10). Salps aggregations were found around Punta Eugenia in January, toward the oceanic stations in July and at the northern region in October.

Pteropods. The main patches of these organisms occurred in the Gulf of Ulloa during January and October and at Vizcaino in July (Fig. 11). In October presented a general abundance higher than other cruises.

Chaetognaths. A strong regional difference was observed year round (Fig. 12). The highest abundance occurred in January.

Siphonophores. Did not show a defined spatial tendency but temporal (Fig. 13). Their highest density was in October.

Medusae. Some shallow stations recorded high concentration, but in other were absent (Fig. 14). Values in the oceanic region were usually low.

Ichthyoplankton. Two stations at north had high values, but the rest of the year ther was a clear prevalence in the central region (Fig. 15). Maximal abundances were mainly in Vizcaino Bay and Gulf of Ulloa.

The rest of taxa were few abundant and their distribution is not shown. Decapods were found in 92% of the samples, while heteropods in 80%. Three of the remainder holozoplankton taxa (polychaetes, cladocerans, and ctenophores) were found in 33-47% of the samples, while pyrosomes only occurred in 3%.

The most conspicuous meroplankton organisms were the stomatopod larvae, observed in 19% of the north region samples and 51% of the central region. Abundance higher than 1 ind m⁻³ was recorded in four samples (three from Vizcaino Bay).

superiores a 1 ind m⁻³ se registraron en cuatro muestras (tres de Bahía Vizcaino).

Larvas de cefalópodos fueron encontradas en 32% de las muestras, pero sólo seis de ellas arrojaron abundancias superiores a $100 \text{ ind}/1000 \text{ m}^3$ (2 en julio y 4 en octubre).

Larvas filosoma de langosta roja (*Panulirus interruptus*) fueron encontradas en 23 muestras nocturnas (43% del crucero 0101 y 39% del 0110).

4. COMPARACIÓN CON OTROS DATOS

4.1 <u>Composición del zooplancton de Septiembre</u> 1997 a Octubre 2001 (cruceros IMECOCAL)

А través de las prospecciones del IMECOCAL se ha encontrado consistentemente una menor cantidad de organismos en la región comprendida al norte de Punta Baja (líneas 100-110), que al sur de esta prominencia. Esta última región, es aquí designada central por su ubicación respecto a la península de Baja California (líneas 113-137). En la Figura 16 se muestra la mediana de abundancia de los taxa principales por región, en forma de barras apiladas. La altura total de la barra es la suma de las medianas apiladas de estos grupos y por simplicidad la denominamos abundancia total. En la región norte durante el año 2001, la abundancia total saltó de 28 a 50 ind m⁻³ de enero a abril y luego disminuyó levemente hasta llegar a octubre con 40 ind m⁻³. En la región central, por el contrario la mayor abundancia total se registró en enero (66 ind m⁻³). No tenemos datos suficientes de esta región para abril. En julio disminuyó a 48 ind m⁻³ y se mantuvo aproximadamente igual en octubre (51 ind m⁻³). 2001 ha sido el año con mayor abundancia total en ambas regiones desde 1998.

Considerando todos los cruceros IMECOCAL, se observó que la región central sustentó mayor abundancia que la región norte. La mayor diferencia ocurrió en los periodos invernales de 1999 y 2001, cuando el zooplancton de la región central fue 106 y 135% más abundante que en la Cephalopod larvae were found in 32% of the samples, but only six of these had abundance higher than 100 ind/1000 m³ (2 in July and 4 in October).

Phyllosoma larvae of the red spiny lobster (*Panulirus interruptus*) were found in 23 nighttime samples (43% from cruise 0101 and 39% from 0110).

4. COMPARISON WITH OTHER DATA

4.1 <u>Zooplankton structure from September</u> <u>1997 to October 2001 (IMECOCAL</u> cruises)

Through the IMECOAL surveys the region located at north of Punta Baja (lines 100-110) has consistently shown lesser organisms than the region southern to that prominence. The last region is designed here central due its geographical location in the Baja California peninsula (lines 113-137). In the Figure 16 the median abundance of the main taxa is shown by region, in the form of stacked bars. The total bar height is the sum of the individual taxa medians and by simplicity is named total abundance. In the northern region during 2001, the total abundance bounded from 28 to 50 ind m⁻³ between January and April. Further decreased lightly to reach 40 ind m⁻³ in October. In contrast, in the central region, the maximum total abundance was observed in January (66 ind m^{-3}). We do not have enough data form April for this region. In July decreased to 48 ind m⁻³ and remain similar in October (51 ind m^{-3}). 2001 has been the year with the highest total abundance in both regions from 1998.

Taking all the IMECOCAL cruises, the central region had higher carrying capacity of zooplankton compared to the north region. The highest difference occurred during winter 1999 and 2001, when the zooplankton of the central region was 106 and 135% more abundant than northern region respectively. The only cruise where northern region lightly surpassed (14%) the central was in October 2000. The mean ratio per cruise is 1.5 between central and

región norte respectivamente. El único crucero donde la región norte sobrepasó ligeramente (14%) la abundancia de la central fue el de octubre 2000. La razón promedio por crucero es de 1.5 entre la abundancia de la región central y la norte.

La diferencia entre zonas obedece de manera importante a incrementos de copépodos en la región central. Por ejemplo, en enero 2001 la abundancia de copépodos fue en la región central 80% mayor que en la norte. Sin embargo, otros grupos presentan diferencias más dramáticas entre estas dos regiones. Los eufáusidos fueron tres veces más abundantes en la región central durante los cruceros 9801, 9901, 0004 y 0101. Los tunicados (salpas y doliólidos) proliferaron en la región central al final del evento El Niño 1997-1998 y su transición a condiciones frías, hasta alcanzar abundancias 22 veces superiores a las encontradas en la región central en 9807 y 58 veces mayores en 9810 (ver también Lavaniegos et al. 2002). En enero 2001 los tunicados (principalmente doliólidos) fueron casi 8 veces más abundantes en la región central. Las apendicularias aumentaron durante 2001 en ambas regiones, pero durante enero su proporción en la región central sobrepaso más de 3 veces a la región norte.

La región central también muestra un alto componente carnívoro. Las razones medias de quetognatos sifonóforos y medusas fueron de 3.2, 2.8 y 1.7 (central/norte). En enero 2001 los quetognatos alcanzaron una razón record de 9.5.

La variación estacional de los diferentes taxa no puede aún definirse con claridad y es necesario ampliar la serie de tiempo. Se destaca el hecho de 4.2 Zooplankton biomass in the context of que para la región central, el periodo de máxima abundancia ha sido el invierno, alternativamente con la primavera, especialmente de copépodos y eufáusidos.

4.2 Biomasa de zooplancton en el contexto del periodo 1951-1984 (cruceros CalCOFI)

Las tendencias a largo plazo de la biomasa del zooplancton en el sector Bajacaliforniano de la Corriente de California observadas en los cruceros

northern regions.

The difference between regions partially obeys to copepod increase in the central region. Per example, in January 2001 copepod abundance was 80% higher in the central region. However, other taxa present more dramatic differences between these two regions. Euphausiids were three times more abundant in the central region during cruises 9801, 9901, 0004 and 0101. Tunicates (salps and doliolids) proliferated at the end of the 1997-1998 El Niño and further transition to cool conditions, to reach 22 times more abundance in the central region in 9807 and 58 times more in 9810 (see also Lavaniegos et al. 2002). In January 2001 the tunicates (mainly doliolids) were almost eight times more abundant the central region. in Appendicularians increased in both regions during 2001, both during January their proportion in the central region was 3 times higher to the northern region.

The central region showed also a high carnivore component. Mean ratios (per cruise) for chaetognaths, siphonophores and medusae were 3.2, 2.8 and 1.7 (central/north). January In 2001, chaetognaths reached a ratio record of 9.5.

Seasonal variability of the different taxa could still not be clearly defined, and a longer time-series is needed. We remarks for the central region that winter has been the season with highest abundance, alternatively with spring, particularly of copepods and euphausiids.

the period 1951-1984 (CalCOFI cruises)

long-term The tendencies of zooplankton biomass in the Baja Californian sector of the California Current observed in the CalCOFI cruises from 1951 to 1984 were discussed by Lavaniegos et al. (1998). Here we present these timeseries with additional data from the 16 IMECOCAL cruises performed in 1997-2001 (Figs. 17-18). For the first CalCOFI cruises (1950s, 1960s) with a monthly frequency, January, April, July and

CalCOFI de 1951 a 1984 fueron discutidas por Lavaniegos *et al.* (1998). Aquí presentamos estas series de tiempo, a la cuales se añadieron los datos de los 16 cruceros IMECOCAL realizados en 1997-2001 (Figs. 17-18). Para los primeros cruceros CalCOFI (1950s, 1960s), realizados con una frecuencia mensual se tomaron preferentemente los meses de enero, abril, julio y octubre para representar las estaciones del año.

Con excepción de algunos cruceros de la década los 1950s, la media logarítmica por crucero raramente rebasó el valor de 2.5 (que representa alrededor de 300 ml/1000 m³). Durante el periodo reciente de 1997-2001, la media logarítmica de primavera, verano y otoño en la región norte mostró valores más bajos al promedio histórico, lo que representa anomalías ligeramente negativas (Fig. 17). En cambio durante invierno los valores fueron similares al promedio histórico invernal.

En la región central solamente en otoño se registraron anomalías negativas de 1999 a 2001 (Fig. 18). Los cruceros realizados en otras estaciones del año presentaron una biomasa media cercana al promedio histórico, destacando únicamente una fuerte anomalía positiva en enero de 1998, durante el evento cálido El Niño.

5. AGRADECIMIENTOS

La colecta de muestras de zooplancton estuvo a cargo de Tomás Campos Alfaro, Susana Camarillo Coop, Guillermo Ortuño Manzanares, Cristina Sánchez Ochoa, Concepción Curiel Mondragón, Edgar Escalante Mancera y Gonzalo Abundiz Torres. Se reconoce ampliamente el esfuerzo de la tripulación del B/O *Francisco de Ulloa*. Los datos CalCOFI de biomasa de zooplancton fueron amablemente proporcionados por Paul Smith. El apoyo financiero provino del proyecto CONACYT G35326-T y del proyecto interno del CICESE "Respuesta del plancton al forzamiento de mesoescala en el ecosistema pelágico de la zona Sur de la Corriente de California". October were selected as representative of the seasons.

Excepting some cruises from the decade 1950s, the log-mean per cruise rarely surpassed 2.5 (which represent a biomass around 300 ml/1000 m³). During the recent period 1997-2001, the log-mean from spring, summer and fall in the northern region showed values lower than historic mean, representing lightly negative anomalies (Fig. 17). In contrast, winter had values similar to the historic mean for this season.

In the central region only autumn recorded negative anomalies from 1999 to 2001 (Fig. 18). The cruises performed in other seasons showed a log-mean near to the historic mean, with the single exception of the positive anomaly in January 1998, during the warm El Niño event.

5. AKNOWLEDGEMENTS

The zooplankton sampling was done by Tomás Campos-Alfaro, Susana Camarillo-Coop, Guillermo Ortuño-Manzanares. Cristina Sánchez-Ochoa, Concepción Curiel-Mondragón, Edgar Escalante-Mancera and Gonzalo Abundiz-Torres. The effort of the R/V Francisco de Ulloa crew is greatly appreciated. Paul Smith kindly provided the CalCOFI data of zooplankton biomass. The financial support was from CONACYT (Grant G35326-T) and from the CICESE Project "Respuesta del plancton al forzamiento de mesoescala en el ecosistema pelágico de la zona Sur de la Corriente de California".

6. LITERATURA CITADA 6. LITERATURE CITED

- Durazo, R., Baumgartner T.R., Bograd S.J., Collins C.A., De la Campa S., García J., Gaxiola G., Huyer A., Hyrenbach D., Loya D., Lynn R.J., Schwing F.B., Smith R.L., Sydeman W.J., and Wheeler P. 2001. The state of the California Current 2000-2001: A third straight La Niña year. *California Cooperative Oceanic Fisheries Investigations Reports* 42:29-60.
- Kramer D.M., Kalin J., Stevens E.G., Thrailkill J.R. and Zweiffel R. 1972. Collecting and processing data on fish eggs and larvae in the California Current. NOAA Tech. Rep. NMFS Circ. 370, 38 p.
- Lavaniegos B.E., Gómez-Gutiérrez J., Lara-Lara J.R. y Hernández-Vázquez S. 1998. Longterm changes of zooplankton volumes in the California Current System.- The Baja California region. *Marine Ecology Progress Series* 169:55-64.
- Lavaniegos B.E., Jiménez-Pérez L.C. and Gaxiola-Castro G. 2002. Plankton response to El Niño 1997-1998 and La Niña 1999 in the southern region of the California Current. *Progress in Oceanography* 54(1-4):33-58.
- Schwing F.B., Bograd S.J., Collins C.A., Gaxiola-Castro, G., García J., Goericke R., Gómez-Valdez J., Huyer A., Hyrenbach K.D., Kosro M., Lavaniegos B.E., Lynn R.J., Mantyla A.W., Ohman M.D., Peterson W.T., Smith R.L., Sydeman W.J., Venrick E., and Wheeler P.A. 2002. The state of the California Current, 2001-2002: Will the CCS keep its cool, or is El Niño looming? *California Cooperative Oceanic Fisheries Investigations Reports* 43:31-68.
- Smith P.E. and Richardson S. L. 1977. Técnicas modelo para prospecciones de huevos y larvas de peces pelágicos. FAO Doc. Técnic. Pesca No. 175, 107 p.
- U.S. GLOBEC. 1994. A science plan for the California Current. Global Ocean Ecosystems dynamics Rep. 11. Univ. Calif., Berkeley CA.

ESTACION	LATITUD	LONGITUD	FECHA	HORA	HORA VOLUM. PROF. BIOMASA		BIOMASA		
STATION			(d/m/a)			FILTR.	ΜΑΧΙΜΑ		
UTATION	LAMODE	LONGITODE	(d/m/y)	HOUR	HOUR	VOLUME	DEPTH	BIOMASS	BIOMASS
	(N)	(W)		(h:m)	(h:m)	(m ³)	(m)	(ml/1000 m ³)	(ml/1000 m ³)
100.30	31° 41.1	116° 46.6	16/01/2001	11:20	11:38	495	210	4	4
100.35	31° 31.2	117° 06.9	16/01/2001	16:22	16:38	442	212	16	16
100.40	31° 21.2	117° 27.1	16/01/2001	21:00	21:18	413	223	109	109
100.45	31° 11.1	117° 47.1	17/01/2001	01:31	01:48	414	203	41	41
100.50	31° 01.0	118° 07.3	17/01/2001	06:09	06:25	457	212	37	37
100.55	30° 51.1	118° 27.5	17/01/2001	10:45	11:05	511	212	14	14
100.60	30° 41.1	118° 47.5	17/01/2001	15:04	15:20	413	211	17	17
103.30	31° 06.9	116° 24.5	19/01/2001	02:57	03:00	67	28	357	357
103.35	30° 55.0	116° 44.2	18/01/2001	23:04	23:24	378	227	132	132
103.40	30° 46.9	117° 04.7	18/01/2001	18:29	18:47	443	211	124	124
103.45	30° 35.0	117° 23.6	18/01/2001	11:54	12:13	519	213	8	8
103.50	30° 26.8	117° 44.6	18/01/2001	07:32	07:53	494	212	10	10
103.55	30° 15.8	118° 04.6	18/01/2001	03:01	03:18	335	212	60	60
103.60	30° 06.7	118° 24.7	17/01/2001	22:11	22:28	434	217	37	37
107.32	30° 27.4	116° 09.8	19/01/2001	09:51	10:00	239	105	8	8
107.35	30° 21.5	116° 21.6	19/01/2001	12:52	13:08	390	202	18	18
107.40	30° 11.5	116° 47.8	19/01/2001	17:16	14:36	542	212	24	24
107.45	30° 01.4	117° 01.7	19/01/2001	21:11	21:30	408	220	73	73
107.50	29° 51.3	117° 21.7	20/01/2001	01:40	01:58	410	208	32	32
107.55	29° 41.6	117° 41.5	20/01/2001	05:52	06:11	525	212	38	38
107.60	29° 31.4	118° 01.5	20/01/2001	09:27	09:46	592	190	5	5
110.35	29° 47.2	115° 59.9	21/01/2001	16:54	17:13	425	213	35	35
110.40	29° 37.3	116° 19.9	21/01/2001	10:36	10:53	436	197	37	37
110.45	29° 27.3	116° 39.5	21/01/2001	06:56	07:15	435	212	41	41
110.50	29° 17.1	116° 59.2	21/01/2001	02:47	03:05	388	211	103	103
110.55	29° 07.3	117° 19.0	20/01/2001	22:44	23:03	406	213	44	44
110.60	28° 57.3	117° 38.6	20/01/2001	18:28	18:46	426	212	75	75
113.30	29° 22.9	115° 18.2	22/01/2001	16:45	16:49	85	36	83	83
113.35	29° 12.9	115° 37.8	22/01/2001	20:43	21:02	458	216	94	94
113.40	29° 02.8	115° 57.6	22/01/2001	23:54	00:10	411	217	68	68
113.45	28° 59.9	116° 17.3	23/01/2001	05:19	05:39	454	212	35	35
113.50	28° 42.8	116° 37.2	23/01/2001	09:06	09:22	458	209	70	70
113.55	28° 32.8	116° 56.7	23/01/2001	15:27	15:48	489	215	27	27
113.60	28° 22.9	117° 16.2	23/01/2001	19:31	19:49	508	212	49	49
117.75	27° 17.5	117° 51.5	24/01/2001	14:24	14:42	458	211	22	22
117.80	27° 06.6	118° 10.6	24/01/2001	09:37	09:55	465	200	17	17
119.33	28° 16.9	114° 52.5	26/01/2001	12:37	12:42	114	67	26	26
120.30	28° 13.2	114° 34.2	26/01/2001	15:42	15:46	139	60	87	87
120.35	28° 03.3	114° 53.8	26/01/2001	19:09	19:13	97	49	92	92
120.40	27° 56.3	115° 07.3	27/01/2001	19:41	19:44	77	28	26	26
120.45	27° 43.3	115° 32.8	28/01/2001	00:48	01:05	382	216	118	118

Tabla 1. Datos de los arrastres bongo y biomasa del zooplancton del crucero IMECOCAL 0101. Table 1. Data of bongo net tow and zooplankton biomass from IMECOCAL cruise 0101.

Tabla 1. (.....continuación) Table 1. (.....continuation)

120.50	27° 33.3	115° 52.2	28/01/2001	05:10	05:28	455	213	88	88
120.55	27° 23.0	116° 11.4	28/01/2001	09:07	09:27	470	216	74	155
120.60	27° 13.2	116° 31.1	28/01/2001	15:46	16:03	516	212	68	68
120.65	27° 03.3	116° 50.4	28/01/2001	19:46	20:05	433	214	127	288
120.70	26° 52.8	117° 10.1	28/01/2001	23:33	23:51	459	226	131	131
120.75	26° 43.2	117° 29.1	29/01/2001	03:22	03:38	341	210	59	112
120.80	26° 33.3	117° 48.3	29/01/2001	07:03	07:22	452	210	18	18
123.42	27° 14.5	114° 59.1	30/01/2001	11:50	12:08	473	201	84	84
123.50	26° 58.9	115° 30.3	30/01/2001	05:54	06:12	402	210	57	57
123.55	26° 48.9	115° 49.7	30/01/2001	01:20	01:37	403	205	112	112
123.60	26° 38.5	116° 08.9	29/01/2001	20:46	21:05	552	211	109	109
127.35	26° 53.7	114° 10.0	30/01/2001	18:50	18:56	132	64	304	304
127.40	26° 42.9	114° 29.4	30/01/2001	22:53	23:12	436	235	229	229
127.45	26° 33.6	114° 48.6	31/01/2001	02:51	03:07	324	214	108	108
127.50	26° 23.7	115° 07.9	31/01/2001	06:56	07:13	443	212	77	77
127.55	26° 13.7	115° 27.1	31/01/2001	10:33	10:53	515	201	50	50
127.60	26° 03.7	115° 46.3	31/01/2001	17:37	17:55	474	212	32	32
130.30	26° 29.4	113° 29.4	01/02/2001	22:21	22:26	118	43	382	552
130.35	26° 19.4	113° 48.7	01/02/2001	18:34		484	211	72	72
130.40	26° 09.4	114° 07.8	01/02/2001	14:47		366	207	36	36
130.50	25° 49.3	114° 46.3	01/02/2001	08:08	08:28	523	210	38	38
130.60	25° 29.3	115° 24.4	01/02/2001	01:01		437	191	75	75
133.25	26° 05.0	112 49.1	02/02/2001	04:38	04:44	131	57	184	184
133.30	25° 55.1	113° 08.2	02/02/2001	08:08	08:21	310	135	42	74
133.35	25° 45.0	113° 27.5	02/02/2001	11:46	12:04	454	217	132	132
133.40	25° 35.1	113° 46.5	02/02/2001	17:51	18:10	448	213	67	67
133.50	25° 14.9	114° 24.9	03/02/2001	00:37	00:54	420	206	60	60
137.25	25° 29.7	112° 27.4	03/02/2001	20:24	20:29	149	59	201	201
137.30	25° 19.8	112° 46.6	03/02/2001	17:02	17:21	473	211	106	125
137.35	25° 09.6	113° 05.4	03/02/2001	13:29	13:45	392	201	41	41
137.40	24° 59.7	113° 24.4	03/02/2001	09:35	09:53	434	213	65	1771

ESTACION	LATITUD	LONGITUD	FECHA (d/m/a)	HORA INICIAL	HORA HORA V INICIAL FINAL		PROF. MAXIMA	BIOMASA CHICA	BIOMASA TOTAL
STATION	LATITUDE	LONGITUDE	DATE (d/m/y)	STARTING HOUR	ENDING HOUR	FILTERED VOLUME	MAXIMAL DEPTH	SMALL BIOMASS	TOTAL BIOMASS
	(N)	(W)		(h:m)	(h:m)	(m ³)	(m)	(ml/1000 m ³)	(ml/1000 m ³)
100.30	31° 41.1	116° 46.6	05/04/2001	18:58	19:16	414	239	24	24
100.35	31° 31.0	117° 06.7	05/04/2001	23:13	23:31	383	216	65	65
100.40	31° 21.0	117° 26.9	06/04/2001	04:23	04:44	565	208	62	62
100.45	31° 11.0	117° 47.3	06/04/2001	09:44	10:01	382	238	39	39
100.50	31° 01.2	118° 07.3	06/04/2001	14:14	14:32	428	212	28	28
100.55	30° 51.1	118° 27.3	06/04/2001	18:40	19:00	404	216	50	50
100.60	30° 41.2	118° 47.4	06/04/2001	23:28	23:45	459	212	61	61
103.30	31° 06.7	116° 24.5	08/04/2001	08/04/2001 07:17 07:21 83 37		313	313		
103.40	30° 46.1	117° 04.2	08/04/2001	00:27	00:43	345	212	67	67
103.50	30° 26.9	117° 44.5	07/04/2001	16:54	17:12	380	210	45	45
103.55	30° 16.0	118° 01.5	07/04/2001	12:46	13:02	400	212	38	38
103.60	30° 06.8	118° 24.6	07/04/2001	06:15	06:36	516	211	37	37
107.32	30° 27.1	116° 09.5	08/04/2001	14:13	14:22	217	99	69	69
110.40	29° 35.2	116° 19.3	10/04/2001	14:05	14:22	447	213	22	22
110.55	29° 07.2	117° 19.0	11/04/2001	01:13	01:31	456	213	39	39
110.60	28° 57.2	117° 38.7	11/04/2001	05:39	05:57	319	211	47	47
113.30	29° 22.9	115° 18.1	12/04/2001	14:08	14:12	104	35	48	48
113.35	29° 12.8	115° 38.0	12/04/2001	10:34	10:51	338	214	74	74
113.40	29° 02.9	115° 57.6	12/04/2001	07:18	07:37	340	213	118	118
113.45	28° 52.8	116° 17.3	12/04/2001	02:55		429	212	54	54
113.50	28° 42.9	116° 36.9	11/04/2001	22:55	23:11	381	207	39	39
113.55	28° 32.0	116° 56.6	11/04/2001	19:03	19:20	304	218	33	33

Tabla 2. Datos de los arrastres bongo y biomasa del zooplancton del crucero IMECOCAL 0104.Table 2. Data of bongo net tow and zooplankton biomass from IMECOCAL cruise 0104.

ESTACION	LATITUD	LONGITUD	FECHA (d/m/a)	HORA INICIAL	HORA FINAL	VOLUM. FILTR.	PROF. MAXIMA	BIOMASA CHICA	BIOMASA TOTAL		
STATION	LATITUDE	LONGITUDE	DATE (d/m/y)	STARTING HOUR	ENDING HOUR	FILTERED VOLUME	MAXIMAL DEPTH	SMALL BIOMASS	TOTAL BIOMASS		
	(N)	(W)		(h:m)	(h:m)	(m ³)	(m)	(ml/1000 m ³)	(ml/1000 m ³)		
100.30	31° 41.2	116° 46.6	26/06/2001	11:33	11:53	423	214	213	213		
100.35	31° 32.0	117° 11.2	26/06/2001	16:32	16:47	345	208	116	116		
100.40	31° 21.2	117° 26.9	26/06/2001	21:23	21:42	443	213	169	169		
100.55	30° 50.3	118° 24.5	27/06/2001	13:52	14:11	389	209	39	39		
100.60	30° 40.2	118° 47.4	27/06/2001	19:31	19:48	408	218	123	162		
103.30	31° 06.9	116° 24.6	29/06/2001	07:43	07:48	112	35	1120	1120		
103.50	30° 25.5	117° 44.5	28/06/2001	13:20	13:40	459	202	109	109		
103.55	30° 16.8	118° 04.8	28/06/2001	08:01	08:18	493	211	20	20		
107.32	30° 27.4	116° 09.8	29/06/2001	19:11	19:19	196	112	71	71		
107.35	30° 21.4	116° 21.7	29/06/2001	22:37	22:55	299	215	77	77		
107.40	30° 11.2	116° 41.7	30/06/2001	03:25	03:45	480	228	135	135		
107.45	30° 01.5	117° 01.7	30/06/2001	07:44	08:05	351	211	86	86		
107.55	29° 41.5	117° 41.3	30/06/2001	18:30	18:52	475	222	38	38		
107.60	29° 31.6	118° 01.3	30/06/2001	23:04	23:23	414	213	63	63		
110.35	29° 47.0	115° 59.8	02/07/2001	08:48	09:07	450	212	67	78		
110.40	29° 36.7	116° 19.5	02/07/2001	03:21	03:39	410	204	110	110		
110.45	29° 27.1	116° 39.5	01/07/2001	22:49	23:07	387	213	65	65		
110.50	29° 17.2	116° 59.4	01/07/2001	18:10	18:38	437	210	57	57		
110.55	29° 07.2	117° 18.9	01/07/2001	13:52	14:10	480	183	35	35		
110.60	28° 57.1	117° 38.7	01/07/2001	06:07	06:32	454	211	40	51		
113.30	29° 22.8	115° 18.1	02/07/2001	17:47	17:51	62	40	373	373		
113.35	29° 12.9	115° 37.7	02/07/2001	22:06	22:23	338	213	74	74		
113.40	29° 02.1	115° 57.1	03/07/2001	02:35	02:53	485	204	76	76		
113.45	28° 52.8	116° 17.3	03/07/2001	07:02	07:17	366	213	68	68		
113.50	28° 42.9	116° 37.1	03/07/2001	13:23	13:43	445	200	34	34		
113.55	28° 32.9	116° 56.7	03/07/2001	17:52	18:09	429	208	37	37		
113.60	28° 22.8	117° 16.2	03/07/2001	22:19	22:37	417	212	120	120		
117.30	28° 47.7	114° 55.8	06/07/2001	08:28	08:34	154	64	843	843		
117.35	28° 37.6	115° 15.5	06/07/2001	04:45		219	111	64	64		
117.40	28° 27.6	115° 35.2	06/07/2001	00:16	00:34	421	211	107	107		
117.45	28° 17.7	115° 54.7	05/07/2001	19:59	20:16	297	212	114	114		
117.50	28° 07.4	116° 14.6	05/07/2001	15:26	15:45	210	198	167	167		
117.55	27° 57.5	116° 33.7	05/07/2001	10:14	10:32	262	212	76	76		
117.60	27° 47.5	116° 53.2	05/07/2001	05:43	06:00	378	200	93	93		
117.65	27° 37.5	117° 12.5	05/07/2001	01:09	01:27	265	213	189	189		
117.70	27° 27.7	117° 32.1	04/07/2001	21:01	21:21	506	212	59	59		
117.75	27° 17.9	117° 51.4	04/07/2001	16:52		381	208	66	66		
117.80	27° 07.6	118° 10.9	04/07/2001	09:51	10:09	400	213	45	45		
119.33	28° 17.5	114° 52.2	06/07/2001	13:12	13:19	139	56	65	65		
120.30	28° 13.1	114° 34.3	07/07/2001	00:59	01:04	125	55	602	602		
120.35	28° 03.3	114° 53.9	07/07/2001	04:43		91	48	822	822		
120.40	27° 56.3	115° 07.4	07/07/2001	07:35	07:38	64	20	78	78		
120.45	27° 43.4	115° 32.8	07/07/2001	11:50	12:11	369	212	49	49		

Tabla 3. Datos de los arrastres bongo y biomasa del zooplancton del crucero IMECOCAL 0107.Table 3. Data of bongo net tow and zooplankton biomass from IMECOCAL cruise 0107.

Tabla 3. (.....continuación) Table 3. (.....continuation)

120.50	27° 33.3	115° 52.2	07/07/2001	18:25		247	211	122	122
120.55	27° 23.2	116° 11.6	07/07/2001	22:39	22:58	293	211	102	102
120.60	27° 12.9	116° 30.9	08/07/2001	03:10	03:29	418	205	96	96
120.65	27° 03.2	116° 50.4	08/07/2001	07:52	08:11	457	212	15	15
120.70	26° 53.2	117° 09.7	08/07/2001	11:41		465	213	11	11
120.75	26° 43.3	117° 29.0	08/07/2001	17:41	18:04	430	237	30	30
120.80	26° 33.3	117° 48.3	08/07/2001	21:56	22:15	494	211	61	71
123.42	27° 15.0	114° 59.4	10/07/2001	08:09	08:29	531	212	43	43
123.60	26° 38.7	116° 08.9	09/07/2001	10:39	10:58	443	213	16	16
127.34	26° 53.6	114° 10.0	10/07/2001	14:53	14:58	125	52	48	48
130.30	26° 29.3	113° 29.4	12/07/2001	20:13	20:17	100	50	1304	2307
130.35	26° 19.5	113° 48.5	12/07/2001	16:39		429	211	82	105
130.40	26° 09.1	114° 07.9	12/07/2001	10:12	10:31	494	214	26	26
130.45	25° 59.4	114° 27.1	12/07/2001	05:57		451	212	40	40
130.50	25° 49.5	114° 45.6	12/07/2001	01:20	01:39	384	220	182	182
130.55	25° 39.3	115° 05.2	11/07/2001	20:59	21:17	399	211	155	155
130.60	25° 28.8	115° 24.6	11/07/2001	13:09	13:28	570	194	70	70
133.25	25° 05.1	112° 49.1	13/07/2001	03:33	03:38	122	50	2469	2469
133.30	25° 55.1	113° 08.2	13/07/2001	07:20	07:31	279	126	108	108
133.35	25° 45.0	113° 27.3	13/07/2001	11:25	11:44	438	215	43	43
133.40	25° 35.0	113° 46.5	13/07/2001	17:57	18:15	368	214	71	71
133.45	25° 25.0	114° 05.6	13/07/2001	22:30	22:49	458	213	87	87
133.50	25° 14.9	114° 24.6	14/07/2001	02:53	03:12	509	200	59	59
133.55	25° 05.1	114° 43.7	14/07/2001	07:34	07:52	431	211	35	35
133.60	25° 55.0	115° 02.7	14/07/2001	11:24	11:43	440	213	34	34
137.25	25° 29.8	112° 27.3	16/07/2001	05:24	05:30	126	63	831	831
137.30	25° 19.7	112° 45.8	16/07/2001	01:43	02:01	584	210	77	77
137.35	25° 09.8	113° 05.4	15/07/2001	21:29	21:48	515	212	146	146
137.40	24° 59.8	113° 24.5	15/07/2001	17:21	17:38	398	210	75	75
137.45	24° 49.7	113° 43.4	15/07/2001	10:43	11:02	524	213	29	29
137.50	24° 39.8	114° 02.5	15/07/2001	06:41	06:59	417	211	103	103
137.55	24° 29.2	114° 21.4	15/07/2001	02:10	02:38	461	221	87	87
137.60	24° 19.8	114° 40.4	14/07/2001	20:40	20:59	495	212	71	71

ESTACION			FECHA (d/m/a)	HORA INICIAL	HORA FINAL	VOLUM. FILTR.	PROF. MAXIMA	BIOMASA CHICA	BIOMASA TOTAL TOTAL		
STATION	LAIITUDE	LONGITUDE	(d/m/y)	HOUR	HOUR	VOLUME	DEPTH	BIOMASS	BIOMASS		
	(N)	(W)		(h:m)	(h:m)	(m ³)	(m)	(ml/1000 m ³)	(ml/1000 m ³)		
100.30	31° 41.1	116° 46.6	03/10/2001	18:07	18:27	629	213	37	37		
100.35	31° 31.9	117° 07.0	03/10/2001	22:49	23:07	572	215	131	131		
100.40	31° 21.2	117° 27.1	04/10/2001	03:20	03:40	718	213	153	153		
100.45	31° 11.2	117° 47.2	04/10/2001	07:55	08:19	769	214	124	124		
100.50	31° 00.9	118° 07.1	04/10/2001	12:06	12:27	722	212	118	325		
100.55	30° 51.3	118° 27.4	04/10/2001	18:27	18:46	776	210	232	232		
100.60	30° 41.0	118° 47.6	04/10/2001	22:53	23:12	577	224	87	87		
103.30	31° 07.0	116° 24.4	06/10/2001	09:59	10:03	151	41	33	33		
103.35	30° 56.9	116° 44.7	06/10/2001	06:06	06:28	768	212	195	195		
103.40	30° 46.9	117° 04.7	06/10/2001	01:58	02:17	671	212	149	149		
103.45	30° 36.9	117° 24.7	05/10/2001	21:38	21:55	534	193	112	112		
103.50	30° 26.8	117° 44.7	05/10/2001	17:06	17:26	619	212	81	81		
103.55	30° 16.9	118° 04.7	05/10/2001	10:42	11:00	697	204	79	79		
103.60	30° 06.9	118° 24.7	05/10/2001	05:55	06:18	537	210	205	205		
107.32	30° 27.4	116° 09.8	06/10/2001	16:14	16:27	435	150	18	18		
107.35	30° 21.5	116° 21.8	06/10/2001	19:04	19:24	565	214	133	133		
107.40	30° 11.4	116° 41.9	06/10/2001	23:16	23:35	621	216	137	137		
107.45	30° 01.5	117° 01.7	07/10/2001	03:51	04:12	638	211	251	251		
107.50	29° 51.5	117° 21.4	07/10/2001	08:36	08:54	580	204	26	26		
107.55	29° 41.5	117° 41.4	07/10/2001	13:11	13:33	658	211	27	27		
107.60	29° 31.4	118° 01.4	07/10/2001	19:52	20:10	583	211	103	103		
110.35	29° 47.2	115° 59.8	09/10/2001	02:51	03:13	716	212	98	98		
110.40	29° 37.2	116° 19.7	08/10/2001	22:13	22:33	638	219	102	102		
110.45	29° 27.1	116° 39.5	08/10/2001	17:17	17:37	646	212	29	29		
110.50	29° 17.1	116° 59.3	08/10/2001	10:59	11:18	610	215	82	82		
110.55	29° 07.2	117° 18.9	08/10/2001	06:59	07:21	667	214	37	37		
110.60	28° 57.2	117° 38.7	08/10/2001	02:42	03:03	647	212	209	209		
113.30	29° 23.1	115° 18.2	09/10/2001	10:04	10:08	113	34	355	355		
113.35	29° 12.9	115° 37.9	09/10/2001	14:07	14:29	674	212	22	22		
113.40	29° 02.9	115° 57.5	09/10/2001	18:21	18:43	611	215	139	139		
113.45	28° 52.2	116° 17.5	09/10/2001	22:53	23:12	492	221	153	153		
113.50	28° 42.9	116° 37.1	10/10/2001	03:09	03:31	726	211	131	131		
113.55	28° 32.8	116° 56.7	10/10/2001	07:02	07:23	614	214	73	73		
113.60	28° 22.9	117° 16.3	10/10/2001	10:55	11:14	523	208	96	96		
117.30	28° 47.6	114° 55.9	13/10/2001	06:12	06:19	263	78	30	30		
117.35	28° 37.2	115° 15.3	13/10/2001	10:15	10:28	406	143	7	7		
117.40	28-27.6	115-35.0	13/10/2001	16:35	16:57	725	213	117	117		
117.45	28-17.6	115 54.7	13/10/2001	21:09	21:29	618	218	73	73		
117.50	28⁻ U/.6 27° 57 5	110-14.2	14/10/2001	01:54	02:16	763	211	52	52		
117.55	21 51.5	110 33.8	14/10/2001	06:23	06:45	706	215	28	28		
147.00	21 41.0 27° 27 0	117 53.3	14/10/2001	10:31	10:50	589	215	51	51		
	21 31.0 27° 27 0	117 12.8	14/10/2001	17:11	17:33	647	214	51	51		
117.70	21 21.0	117 32.1	14/10/2001	21:40	22:00	681	210	140	140		

Tabla 4. Datos de los arrastres bongo y biomasa del zooplancton del crucero IMECOCAL 0110.Table 4. Data of bongo net tow and zooplankton biomass from IMECOCAL cruise 0110.

Tabla 4. (.....continuación) Table 4. (.....continuation)

117.75	27° 17.6	117° 51.6	15/10/2001	02:07	02:29	610	211	82	82
117.80	27° 07.4	118° 10.9	15/10/2001	06:38	06:59	738	214	77	77
119.33	28° 17.6	114° 52.4	13/10/2001	00:46	00:55	292	85	120	120
120.30	28° 12.7	114° 34.0	12/10/2001	20:52	20:59	212	74	127	127
120.35	28° 03.2	114° 53.9	12/10/2001	17:01	17:08	80	64	12	12
120.40	27° 56.4	115° 07.4	12/10/2001	14:06	14:09	102	28	10	10
120.45	27° 43.3	115° 32.8	16/10/2001	20:25	20:46	660	213	80	156
120.50	27° 32.9	115° 52.2	16/10/2001	13:31	13:53	632	211	11	180
120.55	27° 23.2	116° 11.6	16/10/2001	09:29	09:49	651	205	20	20
120.60	27° 13.3	116° 31.0	16/10/2001	05:22	05:44	823	209	79	79
120.65	27° 03.3	116° 50.4	16/10/2001	01:25	01:46	675	212	74	74
120.70	26° 53.4	117° 09.8	15/10/2001	21:16	21:36	596	210	117	117
120.75	26° 43.3	117° 29.0	15/10/2001	17:16	17:37	744	215	65	65
120.80	26° 33.3	117° 48.2	15/10/2001	13:09	13:31	737	211	41	41
123.42	27° 14.9	114° 59.5	17/10/2001	11:30	11:51	722	210	10	44
123.45	27° 08.8	115° 11.1	17/10/2001	16:35	16:47	787	213	41	60
123.50	26° 58.9	115° 30.4	17/10/2001	20:42	21:03	637	217	78	78
123.55	26° 48.9	115° 49.7	18/10/2001	00:48	01:08	661	212	45	45
123.60	26° 39.0	116° 08.9	18/10/2001	04:46	05:08	789	211	82	82
127.34	26° 53.7	114° 10.1	19/10/2001	10:41	10:48	150	69	234	234
127.40	26° 43.7	114° 29.4	19/10/2001	07:01	07:22	636	212	110	385
127.45	26° 33.7	114° 48.6	19/10/2001	02:50	03:11	669	211	49	49
127.50	26° 23.7	115° 07.8	18/10/2001	21:13	21:33	720	206	42	111
127.55	26° 13.6	115° 27.1	18/10/2001	17:57	18:18	647	212	46	46
127.60	26° 03.5	115° 46.6	18/10/2001	11:19	11:39	962	210	21	47
130.30	26° 29.4	113° 29.5	19/10/2001	17:14	17:20	133	57	285	548
130.35	26° 19.4	113° 48.8	19/10/2001	20:53	21:13	400	218	62	687
130.40	26° 09.3	114° 08.0	20/10/2001	01:15	01:37	742	213	67	67
130.45	25° 59.3	114° 27.1	20/10/2001	05:20	05:42	750	212	71	71
130.50	25° 49.4	114° 46.2	20/10/2001	09:57	10:17	560	216	45	45
130.55	25° 39.4	115° 05.3	20/10/2001	16:17	16:39	770	212	39	117
130.60	25° 29.3	115° 24.3	20/10/2001	20:25	20:46	720	209	90	90
133.25	26° 05.0	112° 49.1	22/10/2001	09:09	09:15	197	63	127	127
133.30	25° 55.1	113° 08.2	22/10/2001	05:35	05:51	494	156	71	425
133.35	25° 45.1	113° 27.3	22/10/2001	02:03	02:24	751	211	93	293
133.40	25° 35.0	113° 46.5	21/10/2001	21:42	22:02	742	207	101	236
133.45	25° 25.1	114° 05.6	21/10/2001	17:41	18:02	675	212	34	34
133.50	25° 15.0	114° 24.5	21/10/2001	11:12	11:33	731	213	68	68
133.55	25° 05.0	114° 43.7	21/10/2001	07:12	07:33	570	212	44	44
133.60	24° 55.0	115° 02.6	21/10/2001	03:08	03:30	721	212	104	104
137.25	25° 29.8	112° 27.4	22/10/2001	15:21	15:29	246	85	102	102
137.30	25° 19.8	112° 46.6	22/10/2001	18:56	19:17	756	212	99	112
137.35	25° 09.8	113° 05.5	23/10/2001	01:55	02:17	643	213	82	98
137.40	24° 59.5	113° 24.2	23/10/2001	06:08	06:29	821	212	24	43
137.45	24° 49.2	113° 43.3	23/10/2001	10:09	10:30	725	210	25	29

CRUCERO	ESTACION	ORGANISMOS	ABUNDANCIA
CRUISE	STATION	ORGANISMS	ABUNDANCE
			(ind/1000 m ³)
0101	120.55	1 Salpida	2
	120.65	1 Pyrosoma atlanticum	2
	120.75	1 Heteropoda	3
	130.30	4 Pleuroncodes planipes	34
	133.30	2 Pleuroncodes planipes	6
	137.30	4 Pleuroncodes planipes	8
	137.40	2 Pyrosomid colony fragments	?
0107	100.60	1 Salpida	2
	110.35	1 Ctenophora	2
	110.60	1 Heteropoda	2
	120.80	1 Pleuroncodes planipes	2
	130.30	34 Pleuroncodes planipes	340
	130.35	6 Pleuroncodes planipes	2
0110	100.50	Salpida	?
	120.45	27 Pleuroncodes planipes	41
	120.50	60 Pleuroncodes planipes	95
	123.42	15 Pleuroncodes planipes	21
	123.45	12 Pleuroncodes planipes	15
	127.40	92 Pleuroncodes planipes	145
	127.50	24 Pleuroncodes planipes	33
	127.60	14 Pleuroncodes planipes	15
	130.30	10 Pleuroncodes planipes	75
	130.35	190 Pleuroncodes planipes	475
	130.55	30 Pleuroncodes planipes	39
	133.30	112 Pleuroncodes planipes	227
	133.35	95 Pleuroncodes planipes	126
	133.40	63 Pleuroncodes planipes	85
	137.30	7 Pleuroncodes planipes	9
	137.35	7 Pleuroncodes planipes	11
	137.40	19 Pleuroncodes planipes	23
	137.45	2 Pleuroncodes planipes	3

Tabla 5. Organismos grandes excluidos de la medición de biomasa chica. Table 5. Large organisms excluded in the measurement of small biomass.

Таха	100.40	100.45	103.30	103.35	103.40	103.55	103.60	107.45	107.50	107.55	110.50	110.55	110.60	113.35	113.40
Medusae	2.092	0.483	0.597	1.608	0.289	0.000	0.092	4.706	0.371	0.914	0.536	0.039	0.075	0.175	0.818
Siphonophora	2.634	0.812	0.358	3.810	0.578	2.054	0.728	3.137	0.429	0.610	0.784	0.768	0.601	1.362	2.842
Ctenophora	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.010	0.000	0.004	0.000	0.000	0.005	0.004	0.000
Pteropoda	0.232	0.118	0.119	0.339	0.510	0.382	0.341	2.118	0.351	0.350	0.082	0.552	0.230	0.978	0.545
Heteropoda	0.077	0.000	0.000	0.085	0.036	0.000	0.000	0.314	0.000	0.000	0.000	0.000	0.019	0.524	0.779
Polychaeta	0.000	0.077	0.000	0.169	0.217	0.048	0.000	0.235	0.176	0.137	0.041	0.000	0.131	0.035	0.000
Cladocera	0.000	0.000	0.000	0.085	0.000	0.000	0.000	0.078	0.000	0.000	0.000	0.217	0.000	0.699	0.000
Ostracoda	3.177	1.198	0.000	1.016	2.384	2.722	1.217	3.922	1.717	0.975	1.155	1.478	1.127	1.677	2.530
Copepoda	52.145	15.304	177.910	63.577	14.772	39.212	11.060	30.980	20.176	3.276	26.144	13.517	6.066	23.301	42.628
Amphipoda	0.697	0.135	0.000	0.762	0.470	0.096	0.065	0.784	0.117	0.244	0.371	0.118	0.300	0.140	0.156
Mysidacea	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Euphausiacea	4.107	1.623	2.746	13.884	3.540	6.400	1.668	4.549	0.976	2.408	1.938	2.286	4.169	8.454	4.165
Decapoda	0.775	0.022	0.358	0.762	0.000	0.048	0.028	0.157	0.039	0.006	0.041	0.261	0.171	0.002	0.002
Chaetognatha	2.324	1.411	17.672	3.810	0.289	1.194	0.581	3.137	0.234	0.411	0.660	2.995	0.319	2.550	3.387
Appendicularia	0.775	0.193	1.194	1.524	0.542	0.143	0.018	8.000	0.624	0.061	0.660	2.010	0.075	1.852	2.180
Doliolida	0.000	0.000	0.000	0.085	0.000	0.000	0.018	0.000	0.000	0.000	0.000	0.000	0.000	0.105	0.195
Salpida	0.465	0.019	0.000	0.085	0.072	0.096	0.378	0.314	0.000	0.015	0.041	0.099	0.056	0.070	1.285
Pyrosomida	0.000	0.000	0.000	0.000	0.036	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Cephalopoda larvae	0.077	0.000	0.000	0.000	0.036	0.000	0.000	0.078	0.020	0.002	0.003	0.000	0.056	0.000	0.078
other Mollusca larvae	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.156
Polychaeta larvae	0.155	0.019	0.000	0.169	0.000	0.000	0.028	0.000	0.020	0.000	0.000	0.039	0.056	0.000	0.117
Cirripedia larvae	0.077	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Stomatopoda larvae	0.077	0.000	0.119	0.593	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.019	0.035	0.000
Pisces larvae	0.310	0.019	0.239	0.085	0.000	0.096	0.028	0.235	0.020	0.061	0.041	0.020	0.000	0.070	0.156
Pisces eggs	0.542	0.019	0.000	0.085	0.144	0.096	0.055	1.098	0.215	0.061	0.000	0.020	0.000	0.175	2.530
Total	70.741	21.454	201.313	92.529	23.914	52.585	16.304	63.853	25.483	9.535	32.497	24.419	13.477	42.207	64.547

Tabla 6. Abundancia (ind/m^3) de grupos de zooplancton en las estaciones nocturnas del crucero IMECOCAL 0101. Table 6. Abundance (ind/m^3) of zooplankton groups in nighttime stations of the IMECOCAL cruise 0101.

Таха	113.45	113.60	120.35	120.40	120.45	120.50	120.65	120.70	120.75	123.50	123.55	123.60	127.34	127.40	127.45
Medusae	0.229	0.189	2.804	0.000	0.168	0.422	0.370	0.349	0.211	0.239	0.953	0.812	1.212	0.514	0.790
Siphonophora	0.317	1.701	9.897	11.273	4.188	6.259	3.178	0.976	1.431	2.149	3.653	3.246	9.212	4.404	3.556
Ctenophora	0.002	0.000	0.000	0.000	0.000	0.000	0.018	0.017	0.006	0.040	0.000	0.000	0.000	0.000	0.000
Pteropoda	0.159	0.252	4.619	0.987	1.089	0.141	3.621	3.068	0.164	0.279	0.318	0.696	6.303	0.440	0.000
Heteropoda	0.018	0.063	1.979	0.675	2.178	0.422	1.330	1.255	0.282	0.756	0.715	2.783	1.212	1.982	1.778
Polychaeta	0.141	0.126	0.165	0.000	0.084	0.070	0.074	0.488	0.094	0.000	0.079	0.000	0.727	0.220	0.395
Cladocera	0.000	0.882	0.000	0.000	0.000	0.070	0.074	0.418	0.258	0.199	0.238	0.696	0.000	0.073	0.000
Ostracoda	1.093	1.701	0.165	0.000	1.675	1.618	3.621	2.092	0.821	0.955	1.509	2.087	0.485	2.202	1.185
Copepoda	13.780	20.913	70.598	8.000	29.822	36.079	39.612	56.819	20.199	23.522	38.670	70.609	194.909	44.183	88.889
Amphipoda	0.106	0.252	0.165	0.052	0.084	0.070	0.517	0.349	0.258	0.000	0.079	0.116	0.242	0.000	0.395
Mysidacea	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Euphausiacea	2.062	3.654	25.072	33.455	14.743	7.807	20.176	16.802	3.167	8.756	11.593	9.043	22.061	31.413	21.136
Decapoda	0.088	0.063	1.814	1.247	2.102	0.567	0.222	0.349	0.328	0.040	0.238	0.232	8.386	27.229	2.583
Chaetognatha	2.326	6.740	6.928	0.208	11.644	9.705	10.864	13.037	4.293	11.423	14.293	18.899	30.061	3.229	15.802
Appendicularia	0.317	4.472	16.660	4.156	1.843	3.165	7.021	7.529	1.806	2.149	3.653	3.478	7.030	1.541	1.383
Doliolida	0.018	0.189	0.000	0.000	0.000	0.000	0.222	0.000	0.845	0.955	1.032	0.232	2.424	0.000	0.593
Salpida	0.282	0.063	0.495	0.000	0.754	0.352	0.517	0.209	1.103	1.592	0.873	0.928	0.727	0.073	0.593
Pyrosomida	0.000	0.126	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.002	0.242	0.000	0.000
Cephalopoda larvae	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.073	0.000
other Mollusca larvae	0.035	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Polychaeta larvae	0.000	0.000	0.000	0.000	0.000	0.070	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Cirripedia larvae	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.198
Stomatopoda larvae	0.018	0.000	3.794	0.831	0.419	0.352	0.222	0.349	0.000	0.478	0.873	0.232	0.727	0.073	0.198
Pisces larvae	0.159	0.378	0.000	0.000	0.419	0.070	0.222	0.070	0.117	0.199	0.079	0.348	1.455	0.294	0.198
Pisces eggs	0.123	0.189	0.000	1.039	0.586	0.844	3.252	2.440	0.094	0.677	0.873	0.464	0.970	0.147	0.000
Total	21.271	41.953	145.155	61.922	71.798	68.084	95.132	106.614	35.478	54.408	79.722	114.900	288.386	118.092	139.670

Tabla 6.IMECOCAL 0101 (continuación)

Table 6. IMECOCAL 0101 (continuation)

Tabla 6. IMECOCAL 0101 (continuación)

 Table 6.
 IMECOCAL 0101 (continuation)

Таха	127.60	130.30	130.35	130.60	133.25	133.40	133.50	137.25
Medusae	0.068	0.000	0.331	0.366	0.489	0.214	0.076	0.000
Siphonophora	0.304	0.000	1.983	1.684	4.397	2.357	0.000	5.369
Ctenophora	0.034	0.000	0.000	0.003	0.000	0.000	0.000	0.000
Pteropoda	0.608	61.288	0.198	0.513	67.664	0.500	0.229	48.107
Heteropoda	1.722	80.271	1.124	2.124	10.504	0.214	0.648	5.799
Polychaeta	0.101	0.542	0.198	0.073	0.000	0.143	0.076	0.000
Cladocera	0.000	0.000	0.000	0.073	0.000	0.000	1.257	0.000
Ostracoda	1.654	0.000	1.653	2.709	0.000	1.071	0.762	0.000
Copepoda	10.565	345.492	17.322	22.261	80.122	26.286	22.133	85.047
Amphipoda	0.236	0.542	0.331	0.513	0.000	0.071	0.076	0.430
Mysidacea	0.000	0.000	0.000	0.000	3.664	0.000	0.000	9.879
Euphausiacea	4.928	110.102	4.496	4.833	102.595	4.214	7.048	21.906
Decapoda	0.000	341.695	0.397	0.879	11.725	1.357	0.195	169.450
Chaetognatha	11.376	21.695	10.645	25.629	9.771	13.500	11.657	11.597
Appendicularia	1.114	8.136	1.388	1.391	23.450	1.929	2.210	15.248
Doliolida	0.911	0.542	0.529	0.586	1.221	0.357	0.114	4.081
Salpida	0.675	0.000	0.463	0.073	0.000	0.000	0.152	0.000
Pyrosomida	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Cephalopoda larvae	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
other Mollusca larvae	0.034	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Polychaeta larvae	0.000	0.000	0.000	0.000	0.244	0.000	0.038	0.000
Cirripedia larvae	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Stomatopoda larvae	0.169	7.593	0.000	0.000	0.244	0.071	0.267	0.000
Pisces larvae	0.641	3.254	0.529	0.805	7.817	1.071	0.724	1.503
Pisces eggs	0.000	0.542	0.331	0.952	2.931	0.071	0.000	1.074
Total	35.139	981.695	41.917	65.468	326.840	53.429	47.662	379.490

Таха	100.30	100.35	100.40	100.60	103.40	110.55	110.60	113.45	113.50
Medusae	0.502	1.337	1.019	0.558	2.041	0.175	0.150	1.865	0.210
Siphonophora	0.502	3.258	2.209	5.159	3.525	2.947	3.411	4.476	4.073
Ctenophora	0.000	0.010	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Pteropoda	0.039	0.752	0.566	1.046	1.206	6.070	1.254	4.103	1.638
Heteropoda	0.000	0.000	0.227	0.070	0.557	0.070	0.000	0.298	0.042
Polychaeta	0.000	0.251	0.113	0.070	0.000	0.000	0.000	0.149	0.042
Cladocera	0.000	0.836	0.000	0.349	0.557	0.175	0.050	0.373	0.042
Ostracoda	0.232	3.593	2.209	7.251	4.174	6.246	4.063	11.338	5.753
Copepoda	28.135	52.971	19.483	28.932	44.058	18.982	21.016	26.853	18.646
Amphipoda	0.000	1.420	1.076	0.697	1.299	0.702	1.254	2.834	0.798
Euphausiacea	0.541	15.290	13.140	5.856	11.223	5.754	8.677	5.594	5.039
Decapoda	0.309	0.334	0.453	0.000	0.559	0.145	0.201	0.448	0.168
Chaetognatha	2.589	3.927	2.379	8.436	7.235	3.825	2.859	10.368	6.887
Appendicularia	0.116	2.089	3.172	6.205	3.803	1.228	1.154	3.506	2.058
Doliolida	0.000	0.000	0.227	0.767	0.000	0.737	1.003	0.298	0.336
Salpida	0.000	0.000	1.133	0.697	0.000	0.035	0.251	0.000	0.168
Cephalopoda larvae	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.075	0.000
other Mollusca larvae	0.039	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Polychaeta larvae	0.000	0.000	0.000	0.000	0.000	0.035	0.050	0.000	0.210
Cirripedia larvae	0.000	0.000	0.000	0.000	0.649	0.000	0.100	0.000	0.084
Stomatopoda larvae	0.039	0.000	0.000	0.000	0.093	0.000	0.000	0.000	0.000
Echinodermata larvae	0.000	0.000	0.227	0.139	0.000	0.000	0.100	1.193	0.000
Pisces larvae	0.116	0.919	0.623	0.418	0.557	0.316	0.100	0.149	0.126
Pisces eggs	0.116	6.517	0.850	4.741	0.186	0.386	0.050	0.298	1.386
Total	33.275	93.504	49.104	71.390	81.719	47.829	45.743	74.219	47.706

Tabla 7. Abundancia (ind/m³) de grupos de zooplancton en las estaciones nocturnas del crucero IMECOCAL 0104. Table 7. Abundance (ind/m³) of zooplankton groups in nighttime stations of the IMECOCAL cruise 0104.

Таха	100.40	107.35	107.40	107.60	110.40	110.45	113.35	113.40	113.60	117.35	117.40	117.65	117.70	120.30	120.35
Medusae	1.734	4.656	0.533	1.237	0.273	0.744	0.473	0.132	0.192	0.840	2.014	1.992	0.000	7.168	4.220
Siphonophora	6.935	2.676	0.683	2.899	3.941	1.778	0.805	3.002	4.106	0.968	5.207	4.709	4.111	0.512	0.000
Ctenophora	0.018	0.000	0.000	0.000	0.000	0.005	0.000	0.000	0.000	0.002	0.266	0.000	0.000	0.000	0.000
Pteropoda	0.289	0.167	0.367	0.966	0.468	0.372	0.331	1.155	1.420	0.639	0.380	1.026	15.178	6.144	7.736
Heteropoda	0.000	0.054	0.067	0.193	0.117	0.124	0.142	0.066	0.115	0.018	0.076	0.060	0.411	0.512	0.000
Polychaeta	0.144	0.054	0.000	0.193	0.000	0.000	0.000	0.000	0.115	0.000	0.000	0.060	0.000	0.000	0.000
Cladocera	0.000	0.000	0.000	0.193	0.195	1.075	0.000	0.000	1.189	0.000	0.000	0.000	0.126	0.000	0.000
Ostracoda	2.456	1.712	1.017	2.783	4.644	4.134	4.402	4.091	4.297	1.571	4.029	3.019	6.451	0.000	0.000
Copepoda	39.007	17.338	17.767	20.483	23.922	37.788	18.272	14.647	14.082	3.963	27.933	23.547	32.601	542.720	1012.747
Amphipoda	1.011	1.177	0.950	1.391	0.585	1.282	1.183	1.155	0.998	0.694	0.798	2.234	0.538	2.048	0.703
Euphausiacea	5.345	3.050	5.067	11.208	3.746	2.977	7.006	2.408	5.564	3.927	12.124	7.004	11.763	38.400	187.429
Decapoda	0.000	0.214	0.100	0.696	0.390	0.455	0.473	0.528	0.384	0.365	0.076	0.060	0.160	0.000	2.462
Chaetognatha	2.745	2.676	2.217	4.290	2.263	2.894	3.124	1.715	3.837	3.215	2.242	5.434	6.672	9.216	3.516
Appendicularia	0.578	0.214	3.117	5.063	4.371	5.209	2.367	0.726	2.225	1.096	1.330	6.098	1.423	3.072	8.088
Doliolida	39.874	1.873	2.750	0.348	0.195	0.744	0.142	0.099	0.652	0.146	0.494	10.928	4.237	0.000	0.000
Salpida	0.433	0.000	0.000	0.077	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	1.771	0.000	0.000
Cephalopoda larvae	0.000	0.000	0.017	0.000	0.000	0.041	0.047	0.000	0.038	0.018	0.000	1.570	0.002	0.000	0.000
Polychaeta larvae	0.000	0.000	0.133	0.116	0.000	0.041	0.379	0.264	0.345	0.055	0.228	0.121	0.126	0.000	2.813
Cirripedia larvae	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.570	0.060	0.126	0.000	0.000
Stomatopoda larvae	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.018	0.342	0.000	0.063	1.536	3.165
Pisces larvae	0.289	0.054	0.167	0.193	0.351	0.413	0.473	0.759	0.345	0.731	0.608	0.181	3.383	0.000	3.516
Pisces eggs	0.144	0.000	0.000	0.425	0.234	0.165	0.047	0.000	0.422	0.018	0.000	0.242	0.032	2.048	0.000
Total	101.002	35.913	34.950	52.754	45.698	60.243	39.669	30.746	40.326	18.285	58.717	68.347	89.174	613.376	1236.40

Tabla 8. Abundancia (ind/m^3) de grupos de zooplancton en las estaciones nocturnas del crucero IMECOCAL 0107. Table 8. Abundance (ind/m^3) of zooplankton groups in nighttime stations of the IMECOCAL cruise 0107.

Таха	120.55	120.60	120.80	130.30	130.50	130.55	133.25	133.45	133.50	137.25	137.30	137.35	137.55	137.60
Medusae	0.655	1.378	0.194	0.000	0.083	1.604	0.000	0.245	0.094	0.000	0.055	0.311	0.000	0.162
Siphonophora	5.078	11.828	7.838	0.000	5.250	11.870	15.738	0.000	2.232	5.079	2.466	5.406	0.902	2.618
Ctenophora	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.004	0.004	0.000	0.003	0.008	0.004	0.004
Pteropoda	0.928	3.330	35.239	0.000	0.833	1.764	0.000	0.175	1.037	4.825	0.219	2.423	0.174	3.459
Heteropoda	0.164	0.306	0.000	0.000	0.042	0.722	0.000	0.000	0.126	0.254	0.027	0.000	0.000	0.162
Polychaeta	0.000	0.038	0.065	0.000	0.000	0.321	0.000	0.070	0.000	0.000	0.000	0.186	0.000	0.032
Cladocera	0.819	0.191	0.000	0.000	0.125	0.000	0.000	0.000	0.377	0.000	0.000	0.124	0.000	0.032
Ostracoda	2.894	4.402	4.340	0.000	0.375	3.048	0.000	1.048	1.006	0.254	1.342	1.429	0.243	1.939
Copepoda	23.590	20.402	26.623	1382.400	7.625	8.020	2706.89	11.983	14.711	1076.83	24.466	26.283	12.946	12.509
Amphipoda	1.529	0.536	0.389	0.000	0.000	2.486	0.000	0.454	0.314	0.000	0.082	0.746	0.139	0.097
Euphausiacea	8.464	6.239	9.781	459.520	3.083	20.050	96.525	65.328	3.583	42.413	6.466	11.806	3.471	7.822
Decapoda	0.109	0.230	0.259	2.560	0.250	0.481	0.000	0.524	0.094	0.000	0.420	0.186	0.002	0.097
Chaetognatha	5.952	5.282	3.951	0.000	6.458	2.486	2.098	3.808	5.878	8.889	12.685	24.171	8.538	7.628
Appendicularia	5.406	2.067	1.943	15.360	1.250	2.165	2.098	0.769	2.640	14.222	1.945	6.773	0.694	0.840
Doliolida	0.601	9.455	2.397	0.000	1.167	3.449	0.000	0.000	0.000	0.000	1.288	2.796	0.000	0.032
Salpida	0.055	0.191	7.514	0.000	0.083	0.000	0.000	0.000	0.094	0.000	0.000	0.000	0.000	0.000
Cephalopoda larvae	0.000	0.000	0.130	0.000	0.042	0.000	0.000	0.000	0.002	0.000	0.000	0.062	0.000	0.000
Polychaeta larvae	0.000	0.000	0.130	0.000	0.000	0.241	1.049	0.035	0.031	0.000	0.000	0.062	0.000	0.000
Cirripedia larvae	0.273	0.000	0.000	0.000	0.167	0.160	0.000	0.035	0.000	0.000	0.000	0.000	0.000	0.000
Stomatopoda larvae	0.109	0.000	0.000	0.000	0.000	0.160	0.000	0.000	0.000	0.000	0.082	0.000	0.000	0.000
Pisces larvae	0.437	3.407	4.534	0.000	0.250	0.802	0.000	0.769	1.037	0.762	0.767	2.237	0.312	0.646
Pisces eggs	0.164	0.153	0.130	0.000	0.042	0.000	3.148	0.070	0.000	25.143	0.438	0.559	0.208	0.032
Total	57.229	69.435	105.457	1859.840	27.125	59.830	2827.54	85.314	33.263	1178.67	52.752	85.569	27.633	38.113

Tabla 8. IMECOCAL 0107 (continuación)

 Table 8.
 IMECOCAL 0107 (continuation)

Таха	100.35	100.40	100.60	103.35	103.40	103.45	103.60	107.35	107.40	107.45	107.60	110.35	110.40	110.60	113.45
Medusae	0.168	2.496	0.083	1.208	0.620	0.599	0.983	0.368	0.206	0.552	0.165	0.447	0.451	0.198	0.650
Siphonophora	1.594	12.747	1.858	6.708	2.385	2.487	5.363	2.690	4.174	4.991	2.937	2.726	6.370	3.437	3.902
Ctenophora	0.000	1.025	0.250	0.000	0.304	0.180	0.000	0.117	0.026	0.119	0.055	0.179	0.100	0.148	0.163
Pteropoda	0.337	1.337	1.414	0.667	3.148	3.236	1.520	2.209	14.557	3.912	0.714	1.430	1.304	0.247	2.211
Heteropoda	0.028	0.357	0.000	0.125	0.286	0.210	0.209	0.142	0.232	0.000	0.055	0.045	0.150	0.000	0.195
Polychaeta	0.000	0.267	0.000	0.000	0.048	0.060	0.000	0.000	0.000	0.000	0.055	0.045	0.000	0.000	0.000
Cladocera	0.000	0.981	0.083	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Ostracoda	0.336	2.852	2.135	1.292	4.817	2.637	2.801	2.039	1.700	1.480	3.238	1.788	4.013	1.311	3.057
Copepoda	18.601	71.309	21.130	8.333	31.714	28.434	7.091	7.023	24.837	13.342	11.609	31.955	30.495	10.213	22.374
Amphipoda	0.587	0.981	0.610	2.625	2.432	1.348	0.536	1.982	1.726	0.702	0.768	0.849	3.762	0.618	1.333
Euphausiacea	7.860	23.621	4.298	13.542	14.689	9.109	6.257	7.788	5.282	3.887	4.034	14.704	8.677	2.275	7.837
Decapoda	0.056	0.178	0.277	0.167	0.334	0.060	0.000	0.142	0.052	0.125	0.000	0.134	0.150	0.148	0.228
Chaetognatha	0.559	7.220	0.610	2.208	1.240	1.408	2.682	2.492	2.087	3.461	2.223	1.162	1.956	0.915	2.309
Appendicularia	0.587	2.228	0.887	3.042	1.001	2.487	3.814	0.821	1.340	1.931	1.015	0.581	0.953	1.088	1.789
Doliolida	0.000	0.713	15.612	0.125	0.191	0.120	0.119	0.000	0.000	0.025	0.302	0.000	0.150	0.420	0.098
Salpida	0.000	0.000	0.000	0.458	0.334	0.000	0.983	0.170	0.129	0.201	0.220	0.045	0.451	0.470	0.033
Briozoaria larvae	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Cephalopoda larvae	0.000	0.178	0.028	0.000	0.048	0.032	0.030	0.000	0.000	0.000	0.110	0.045	0.000	0.000	0.000
other Mollusca larvae	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Polychaeta larvae	0.000	0.535	0.139	0.000	0.095	0.030	0.089	0.142	0.052	0.100	0.027	0.134	0.000	0.025	0.098
Cirripedia larvae	0.000	0.267	0.194	0.000	0.048	0.000	0.149	0.142	0.077	0.075	0.000	0.000	0.000	0.000	0.000
Stomatopoda larvae	0.056	0.000	0.000	0.292	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.033
Echinodermata larvae	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.028	0.052	0.000	0.000	0.000	0.000	0.000	0.000
Pisces larvae	0.112	0.357	0.028	0.083	0.095	0.180	0.179	0.142	0.155	0.125	0.576	0.268	0.401	0.346	0.293
Pisces eggs	0.028	0.000	0.277	0.042	0.000	0.060	0.179	0.028	0.026	0.025	0.302	0.045	0.000	0.000	0.065
Total	30.911	129.649	49.913	40.917	63.827	52.676	32.983	28.464	56.709	35.053	28.405	56.581	59.386	21.861	46.67

Tabla 9. Abundancia (ind/m^3) de grupos de zooplancton en las estaciones nocturnas del crucero IMECOCAL 0110. Table 9. Abundance (ind/m^3) of zooplankton groups in nighttime stations of the IMECOCAL cruise 0110.

Таха	113.50	117.30	117.45	117.50	117.70	117.75	119.33	120.30	120.45	120.60	120.65	120.70	123.50	123.55	123.60
Medusae	0.397	0.000	0.311	0.042	0.141	0.105	0.000	0.000	0.194	0.778	0.142	0.644	0.502	0.678	1.095
Siphonophora	3.218	0.943	23.042	5.033	3.595	6.138	2.740	3.925	1.115	8.982	7.585	5.154	2.060	8.133	13.019
Ctenophora	0.132	0.000	0.000	0.000	0.006	0.013	0.014	0.000	0.006	0.000	0.000	0.020	0.000	0.006	0.015
Pteropoda	4.496	0.046	2.848	1.300	6.907	3.725	6.247	1.057	0.727	1.400	1.043	5.262	5.074	0.678	5.272
Heteropoda	0.044	0.000	0.104	0.084	0.141	0.052	2.301	0.604	0.000	0.078	0.284	0.268	0.352	0.048	0.446
Polychaeta	0.000	0.000	0.052	0.000	0.000	0.000	0.000	0.000	0.000	0.039	0.000	0.161	0.050	0.097	0.122
Cladocera	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.117	0.142	0.322	0.000	0.048	0.000
Ostracoda	2.821	0.380	4.194	5.578	2.678	3.672	0.000	0.000	3.394	4.083	4.219	3.114	2.361	3.002	4.056
Copepoda	47.647	5.536	26.097	40.556	22.344	23.187	88.88	96.151	17.358	24.42	27.686	22.282	10.248	31.613	5.354
Amphipoda	1.146	0.046	1.191	0.545	1.081	1.364	0.110	0.453	3.200	1.400	0.948	0.644	0.352	0.629	1.217
Euphausiacea	15.074	4.684	7.146	4.236	5.427	9.495	31.014	26.717	16.824	6.921	6.021	7.678	10.700	4.212	9.653
Decapoda	0.178	0.183	0.207	0.336	0.141	0.262	0.219	0.453	0.145	0.272	0.332	0.161	0.151	0.097	0.165
Chaetognatha	2.468	1.004	3.728	3.397	2.467	2.413	0.658	1.660	4.994	5.793	4.219	5.101	11.655	3.679	6.408
Appendicularia	4.848	0.061	0.311	1.216	1.974	19.148	0.877	0.000	6.836	8.399	3.556	12.510	4.421	1.404	2.393
Doliolida	0.000	0.000	1.087	1.007	0.047	0.000	0.000	0.000	0.097	0.311	0.996	0.698	0.000	0.726	1.014
Salpida	0.000	0.000	0.000	0.042	0.000	0.105	0.000	0.000	0.000	0.000	1.090	0.107	0.000	0.097	1.878
Briozoaria larvae	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.117	0.000	0.000	0.000	0.000	0.000
Cephalopoda larvae	0.001	0.000	0.000	0.042	0.000	0.000	0.000	0.000	0.000	0.039	0.237	0.000	0.000	0.000	0.041
other Mollusca larvae	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.048	0.000
Polychaeta larvae	0.088	0.000	0.052	0.126	0.070	0.262	0.000	0.151	0.000	0.778	0.000	0.054	0.000	0.145	0.000
Cirripedia larvae	0.000	0.000	0.104	0.042	0.023	0.052	0.000	0.000	0.048	0.000	0.000	0.054	0.000	0.000	0.000
Stomatopoda larvae	0.000	0.806	0.000	0.000	0.000	0.000	0.000	1.358	0.048	0.000	0.000	0.000	0.251	0.000	0.000
Echinodermata larvae	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.194	0.000	0.000	0.000	0.000	0.000
Pisces larvae	0.441	0.122	0.725	0.503	0.470	0.157	0.548	0.453	0.873	0.233	0.427	0.913	0.151	0.871	0.527
Pisces eggs	0.000	0.183	0.104	0.126	0.047	0.000	5.918	11.170	0.048	0.000	0.142	0.107	0.000	0.097	0.000
Total	83.000	13.992	71.301	64.210	47.559	70.151	139.52	144.151	55.909	64.35	59.070	65.255	48.327	56.309	52.674

Tabla 9.IMECOCAL 0110 (continuación)Table 9.IMECOCAL 0110 (continuation)

Таха	127.45	127.50	130.35	130.40	130.45	130.60	133.30	133.35	133.40	133.60	137.30	137.35	137.40
Medusae	0.120	0.089	0.020	0.129	0.000	0.489	0.000	0.298	3.881	0.266	0.169	1.194	1.130
Siphonophora	4.257	4.711	0.720	5.520	2.645	4.533	1.231	2.429	10.005	6.657	1.270	7.465	0.000
Ctenophora	0.006	0.000	0.000	0.000	0.000	0.011	0.000	0.000	0.000	0.011	0.032	0.000	0.000
Pteropoda	0.765	2.622	13.000	4.485	6.144	0.667	38.413	5.880	22.167	0.799	7.450	12.740	18.456
Heteropoda	0.072	0.178	0.040	0.043	0.171	0.089	0.065	0.043	0.173	0.178	0.593	0.398	0.039
Polychaeta	0.096	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Cladocera	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Ostracoda	0.598	0.622	0.280	0.863	1.536	2.311	0.907	0.000	2.415	0.621	0.000	0.299	0.097
Copepoda	6.051	18.711	15.320	21.520	43.691	18.800	32.648	29.486	42.868	20.638	32.931	43.695	5.924
Amphipoda	0.167	0.533	0.000	0.819	0.683	0.222	0.000	0.000	0.000	0.311	0.254	2.986	0.039
Euphausiacea	3.611	7.511	1.620	14.534	14.421	0.267	8.097	5.752	10.782	15.712	26.751	17.916	0.604
Decapoda	0.145	0.444	0.155	0.733	0.000	0.267	1.749	0.213	0.518	0.101	2.378	13.935	0.195
Chaetognatha	6.170	14.044	2.660	13.369	21.077	21.378	15.870	17.683	0.000	14.424	27.429	18.712	6.022
Appendicularia	2.129	0.933	0.080	2.458	2.389	1.600	1.814	0.937	0.086	2.796	5.079	9.854	0.877
Doliolida	0.215	0.267	0.000	1.294	0.939	1.733	0.130	0.170	0.000	0.133	0.169	6.768	0.000
Salpida	0.000	0.044	0.280	0.086	0.341	0.133	0.000	0.000	0.086	0.000	0.000	0.000	0.000
Briozoaria larvae	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.044	0.000	0.000	0.000
Cephalopoda larvae	0.024	0.133	0.000	0.043	0.000	0.044	0.000	0.043	0.000	0.000	0.000	0.000	0.000
other Mollusca larvae	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.178	0.000	0.000	0.019
Polychaeta larvae	0.143	0.000	0.000	0.302	0.256	0.133	0.000	0.128	0.000	0.000	0.000	0.100	0.000
Cirripedia larvae	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Stomatopoda larvae	0.000	0.089	0.020	0.129	0.000	0.044	0.000	0.000	0.086	0.044	0.000	0.995	0.000
Echinodermata larvae	0.048	0.044	0.060	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Pisces larvae	0.120	0.133	0.120	0.474	1.280	0.267	0.389	0.767	0.776	0.133	0.085	0.796	0.156
Pisces eggs	0.096	1.244	0.300	0.086	0.000	0.311	0.065	0.043	7.332	0.133	1.270	0.000	1.228
Total	24.833	52.356	34.675	66.889	95.573	53.300	101.377	63.872	101.175	63.180	105.860	137.854	34.787

Tabla 9.IMECOCAL 0110 (continuación)Table 9.IMECOCAL 0110 (continuation)

33

- Figura 1. Corrientes del Pacífico Norte y Ecuatorial (tomada de Svedrup *et al.* 1942). Las líneas azules (rojas) ilustran las corrientes frías (cálidas). La región de estudio esta en amarillo, ampliada a la derecha para mostrar la batimetría.
- Figure 1. Currents of the North and Equatorial Pacific (after Svedrup *et al.* 1942). Blue (red) lines show the cold (warm) currents. The study region is in yellow, enlarged at right to display bathymetry.

- Figura 2. Estaciones de colecta durante los cruceros IMECOCAL 0101, 0104, 0107 y 0110. Los círculos sombreados (claros) representan estaciones nocturnas (diurnas)
- Figure 2. Sampling stations during the IMECOCAL cruises 0101, 0104, 0107 and 0110. Shaded (open) circles are stations occupied at night (day)

Figura 3. Volumen desplazado de zooplancton (ml/1000 m³) durante 2001. Figure 3. Displacement volume of zooplankton (ml/1000 m³) during 2001.

Figure 4. Distribution of copepods during 2001 in nighttime stations. Brown bars represent captures higher to the stipulated rank.

Figure 5. Distribution of euphausiids during 2001 in nighttime stations. Brown bars represent captures higher to the stipulated rank.

Figure 6. Distribution of ostracods during 2001 in nighttime stations. Crosses indicate absence.

Figure 7. Distribution of amphipods during 2001 in nighttime stations. Crosses indicate absence.

- Figura 8. Distribución de apendicularias durante 2001 en estaciones nocturnas. Las barras cafés representan capturas superiores al intervalo especificado y las cruces indican ausencia.
 - Figure 8. Distribution of appendicularians during 2001 in nighttime stations. Brown bars represent captures higher to the stipulated rank, and crosses indicate absence.

Figura 9. Distribución de doliólidos durante 2001 en estaciones nocturnas. Las barras cafés representan capturas superiores al intervalo especificado y las cruces indican ausencia.

Figure 9. Distribution of doliolids during 2001 in nighttime stations. Brown bars represent captures higher to the stipulated rank, and crosses indicate absence.

Figura 10. Distribución de salpas durante 2001 en estaciones nocturnas. Las barras cafés representan capturas superiores al intervalo especificado y las cruces indican ausencia.

Figure 10. Distribution of salps during 2001 in nighttime stations. Brown bars represent captures higher to the stipulated rank, and crosses indicate absence.

- Figura 11. Distribución de pterópodos durante 2001 en estaciones nocturnas. Las barras cafés representan capturas superiores al intervalo especificado y las cruces indican ausencia.
- Figure 11. Distribution of pteropods during 2001 in nighttime stations. Brown bars represent captures higher to the stipulated rank, and crosses indicate absence.

- Figura 12. Distribución de quetognatos durante 2001 en estaciones nocturnas. Las barras cafés representan capturas superiores al intervalo especificado y las cruces indican ausencia.
- Figure 12. Distribution of chaetognaths during 2001 in nighttime stations. Brown bars represent captures higher to the stipulated rank, and crosses indicate absence.

- Figura 13. Distribución de sifonóforos durante 2001 en estaciones nocturnas. Las barras cafés representan capturas superiores al intervalo especificado y las cruces indican ausencia.
- Figure 13. Distribution of siphonophores during 2001 in nighttime stations. Brown bars represent captures higher to the stipulated rank, and crosses indicate absence.

Figura 14. Distribución de medusas durante 2001 en estaciones nocturnas. Las barras cafés representan capturas superiores al intervalo especificado y las cruces indican ausencia.

Figure 14. Distribution of medusae during 2001 in nighttime stations. Brown bars represent captures higher to the stipulated rank, and crosses indicate absence.

Figura 15. Distribución de huevos y larvas de peces durante 2001 en estaciones nocturnas. Las barras cafés representan capturas superiores al intervalo especificado y las cruces indican ausencia.

Figure 15. Distribution of fish eggs and larvae during 2001 in nighttime stations. Brown bars represent captures higher to the stipulated rank, and crosses indicate absence.

Figura 16. Aportación de los principales taxa por región en los cruceros IMECOCAL. Figure 16. Proportion of the main taxa by region in the IMECOCAL cruises.

- Figura 17. Variación histórica de la biomasa zooplanctónica en la región norte (líneas 100-110). Los datos de 1951-1984 son de los cruceros CalCOFI. Las anomalías se calcularon restando la media estacional del periodo 1951-1984. Datos transformados a logaritmos.
 - Figure 17. Zooplankton biomass variability in the northern region (lines 100-110). Data for 1951-1984 are from CalCOFI cruises. Anomalies were calculated removing the seasonal mean for the period 1951-1984. Data transformed to logarithms.

Figura 18. Variación histórica de la biomasa zooplanctónica en la región central (líneas 113-137). Los datos de 1951-1984 son de los cruceros CalCOFI. Las anomalías se calcularon restando la media estacional del periodo 1951-1984. Datos transformados a logaritmos.

Figure 18. Zooplankton biomass variability in the central region (lines 113-137). Data for 1951-1984 are from CalCOFI cruises. Anomalies were calculated removing the seasonal mean for the period 1951-1984. Data transformed to logarithms.

INFORMES TÉCNICOS ANTERIORES SOBRE ZOOPLANCTON PREVIOUS TECHNICAL REPORT ON ZOOPLANKTON

Disponibles en línea <u>http://imecocal.cicese.mx/texto/prod/tecnic.htm</u> Available on line

CRUISE

Report

Jiménez-Pérez L.C., Lavaniegos-Espejo B.E. and Baumgartner T. 1998. Biomasa y estructura del zooplancton en aguas de la Corriente de California durante Octubre de 1997. Informe Técnico. Comunicaciones Académicas, Serie Ecología, CICESE 32 p. CTECT9801.

Jiménez-Pérez L.C., Lavaniegos-Espejo B.E. and Baumgartner T. 1999. Biomasa y estructura del zooplancton de la parte sur de la Corriente de California durante Enero de 1998. Informe Técnico. Comunicaciones Académicas, Serie Ecología, CICESE 43 p. CTECT9901.

Jiménez-Pérez L.C., Lavaniegos-Espejo B.E. and Baumgartner T. 2000. Biomasa y estructura del zooplancton en la parte sur de la Corriente de California durante Julio de 1998. Informe Técnico. Comunicaciones Académicas, Serie Ecología, CICESE 41 p. CTECT200010.

Jiménez-Pérez L.C., Lavaniegos-Espejo B.E. and Baumgartner-McBryde. T. 2001a.
 Biomasa y estructura del zooplancton colectado por el crucero IMECOCAL 9809/10 en la parte sur de la Corriente de California. Informe Técnico. Comunicaciones Académicas, Serie Ecología, CICESE, 39 p. CTECT20011.

Jiménez-Pérez L.C., Lavaniegos-Espejo B.E. and Baumgartner-McBryde. T. 2001b.

9901 Biomasa y estructura del zooplancton colectado por el crucero IMECOCAL 9901 en la parte sur de la Corriente de California. Informe Técnico. Comunicaciones Académicas, Serie Ecología, CICESE, 39 p. CTECT20013.

Ángeles-Reyes O., Jiménez-Pérez L.C. and Lavaniegos-Espejo B.E. 2002. Biomasa y estructura del zooplancton colectado por el crucero IMECOCAL 9904 en la parte sur de la Corriente de California. Informe Técnico. Comunicaciones Académicas, Serie Ecología, CICESE, 39 p. CTECT2002.

Hernández León, J.C., S.J. Mejía Acosta, L.C. Jiménez Pérez, and B.E. Lavaniegos Espejo.
2002. Biomasa y estructura del zooplancton colectado por el crucero IMECOCAL 9908 en la parte sur de la Corriente de California. Informe Técnico CICESE, 38 p. No. 3771

Mejía-Acosta, S.J., Hernández-León J.C., Jiménez-Pérez L.C. and Lavaniegos-Espejo B.E.
2003. Biomasa y estructura del zooplancton colectado por el crucero IMECOCAL 9910 en la parte sur de la Corriente de California. Informe Técnico No. 7313, 30 p.

Lavaniegos B.E., Hernández-León J.C., Mejía-Acosta S.J. and Jiménez Pérez L.C. 2004. Biomasa y estructura del zooplancton frente a la costa occidental de Baja California (Cruceros IMECOCAL 0001, 0004, 0007, 0010). [Zooplankton biomass and structure off the western coast of Baja California (IMECOCAL cruises 0001, 0004, 0007, 0010)] Informe

0010 Técnico. Comunicaciones Académicas, Serie Oceanografía Biológica, CICESE 61 p. (21601).